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Introduction _h

lal geometry, the Ricci ..
A process which deforms
of a Riemanniar
ld in a manner formally
gous to the diffusion of heat,
ithing out irregularities in the e

2t plays in important role in the G. Perelman
— apparent proof of the Poincare
,—--C‘on]ecture, one of the seven
_ Millennium Prize Problems for
which the Clay Mathematics
Institute offers a 1,000,000 USD

prize for a correct solution.




Introduction

ohjecture says that :

imply connected, closed 3-manifold is
. orph|c to the 3-sphere.

___icular, Perelman proved G. Perelman
rston's geometrization
-.-'::" cture. This solved in the
affirmative the Poincaré conjecture,
-"posed in 1904, which before its
_solution was viewed as one of
the most important and difficult
open problems in topology.




Introduction -

g —_—

/en a Riemannian manifold with metric
NSor gIJ the Ricci flow may be defined
1€ geometric evolution equation :

=\ here R;; Is the Ricci tensor and t the “time”

'_'.--
-r‘
i

r'i'he normalised version of (1) is




Introduction

Examples (trivial ones)

[

o ——

lidean space, or more generally (Ricci) flat; Ricci
v has no effect. -
e ; Ricci flow collapses the manifold to a point
nite time.
stein manifolds (Ricci = constantxmetric) ; Ricci
W will collapse it to a point if it has positive
ature, leave it invariant if it has zero curvature,
== ——éﬁd expand it if it has negative curvature.

2 e = &
__.—-—_

| In particular, this shows that in general the Ricci
flow cannot be continued for all time, but will
produce singularities. For a 3 dimensional manifold,
Perelman showed how to continue past the singu-
larities using surgery on the manifold.




Introduction

~ Examples (non-trivial ones)

et

o ¥

Cigar soliton or Witten Black-Hole having a

=

~  (steady soliton)
- Has positive curvature
- Asymptotic to a cylinder
- Curvature decays exponentially
- Is rotationally symmestric




Introduction

_ arsions of the Ricci flow have also
2en studied: h
Varic -vature flows defined using either an
nsic curvature, which describes how a curve or
face is embedded in a higher dimensional flat
ace, or an intrinsic curvature, which describes
e internal geometry of some Riemannian

nlfold
= _Ej:'h%'Narlous flows which extremalize some quantity
—  mathematically analogous to an energy or entropy,
e Various flows controlled by a p.d.e. which is a
higher order analog of a nonlinear diffusion

equation....




Numerical simulations

[

of numerical simulations and —
ations with Ricci flow of 2 or 3 dimensional
ifolds comes naturally as Ricci flow is
9y nature. -
‘flow acts directly on the metric of the surface,
g not to preserve the embeddedness. A

imber of interesting results have been obtained
— by estricting to classes of metrics of revolution,
= iﬁ'nce such symmetries are preserved under Ricci

T
-~

- flow and the metric depends on considerably
fewer parameters in such cases.

These surfaces tend to remain embedded in R3
making direct visualization possible.




Numerical simulations

e the Ricci flow equations (1) or (2) are only
kly parabolic and since numerical evolutions
to be very unstable, we need some solutions
d this. Mainly there are in the literature two
jons (see bellow), namely :
ering and reparamatrization method (inspired
DY SE ectral methods)
==using of other flow equations derived from (1), the
= _EeTurck flow is such an example.

~ However an explicit finite-difference scheme for (1)
Is still usable with very small time-steps and high
number digits precision (several hundred) -
removing short wavelength instabilities.




Numerical simulations

e

nain goal of numerical simulations with Ricci =~
is to exh|b|t the formation of singularities

< pinching phenomenon, which occurs
lly for metrics of revolution.

erical simulations in Ricci flow are very similar
those in Numerical relativity, thus some methods
sand experience can be... imported here — even

- '---._I-
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]
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e
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- There are not very manny results in this direction
reported till now. We can mention only two articles,
namely :

1) Garfinkle & Isenberg - math.DG/0306129 (GI)
2) Rubinstein & Sinclair - math.DH/0406189 (RS)




2-surfaces

P —

>-dimensional surface of revolution of genus

) embedded in R* can be defined in a polar repre
tation with coordinates
netric of the form:

-

has the direct physical inter-
pretatlon as the radius from the axis of rotation.
For a closed surface, we have

Choosing p =0 at the North Pole and p =r at the South
Pole




2-surfaces —_——

he numerical instabilities in animplicit .
eme for (1) and inspired by spectral methods,
-in duced a filter which consists of transfor-
0 Fourier space (C dropping shorter
ngth terms, and then transforming back.

L

_ nstein and Sinclair used their own code,
call d Ricci_rot (in C) for numerical simulations
-‘-"—'-'*,.f 1d special codes for vizualisations (in OpenGL)

T

f— -i—l--

—_
F o -

No convergence and stability analysis was done
— at least not reported, for the explicit direct
finite differencing schema used. These produced
several troubles, especialy in the 3D case.

-—I-




2-surfaces -

| flow forces some parts of a surfaceto .
ract while others are inflating creating further
._,,- s of numerlcal mstablllty The solution to
. arametrize the metric, the

I easant onhe Iet h(p) be a constant.

-.?;'ére some results reported by RS

Dumbbell shape 2-surface
under Ricci flow —
Reproduced from [1]
Courtesy of H. Rubinstein



[‘;’ "Maple 11 - C:\Documents and Settlngs\vulcan\My DocumentsA\TEXTE\article _O03\CALIMANESTIOB\lucru10.mw - [Server 1]

merical si. ithMapleis-7 = = = @ =

Animation

Monospac ) (2. x) ramit

with(plots) :

read("'bisurface eqs.m")

= ; . -, 7 groalo(Riogiscal Rs;al '1nmpnnent.$cctisctalar,[]):
Why using | . ions in Ricci flow

Ric[i,i] Caubimtmietn, £) el AT, sihmihiiehe 76} =Rl ), sulstBLEE Rk, £ =k
=(hh[i+1,3]1-bh[i-1,31) /2/delta, (subs{diff(m{rho,t) ,vho,vho)=(mm[i+1,3]-2*mm[i,

= 1
- o I J W
Because - form wich can do sym holic
- — nol [ig 3] :=( (subg gm(rho, Ly gmm[i 111[_1 ,subs (diff(m(rho,t}),rH
Computa Ol b d“‘Vl‘zlua‘il t t) ,xho,rho)=(mm[i+1,§]-2*
same ..

eno2 [i, (({subs({m{rho, t)=mm[i,j],subs{h({rho,t)=hh[i,j],subs{diff(m(rho,t)  rhd
rho)=(hh[i+1,j]1-hh[i-1,j1)/2/delta, (subs{diff(m(rho,t) ,vho,rho)=(mm[i+1,§]-2*%
mO{rho) :=((sin({rho)+e3*sin({3*rho) +c5*sin{5*rho) ) / (1+3*%c3+5+%c5) ) **2;

or numerical simulations

> coo plot{evalf(subs({subs(c3=0.766,c5=-0.091,eval (subs (m(rho, t)=m0{rho) ,h{rhd

| ]
B display(ceoce) ;

ations in several cas




Numerical simulations with Maple

ntages : .

g the analytical and numerical results in separate Maple
or later use. Example = step (1) above produce the main
lions stored in libraries loaded later in separate Maple
heets (bisurface_eqs.m is for 2 surfaces of revolution — se
N )
'a result steps (2) and (3) or (4) above can be done separately in
cial workshhets

;;: parately doing the numerical evolution and vizualitation after
a—-—:analysm steps
~— —Everything done under the same language and environment !

. --Easy to use results for anybody familiar with Maple and not only !

A special mention for the step (1) . Here we used the GrtensorIl
package for algebraic computing of the main equations and
geometrical objects (as the Ricci tensor and scalar). GrTensorIl is

specially designed for differential geometry calculations in
riemannian geometry




Numerical simulations with Maple

g

rface described earlier (the metric (3)) the Ricci tensor
Dhly two non-vanishing components, and the Ricci flow
Jrresponding equations are :

These and other geometrical objects are then stored in a
Maple library (*.m extension) for later use and load. For the 2

surfaces these are the main equations we used for numerical
simulations.




Numerical simulations with Maple

igations we used as initial the function m(p) as

| ‘gppropiate values for the coefficients c3 and c5 controlling
8 shape of the surface - for example for c3 = c5 = 0 the surface

shape of these functions and their derivatives in order to reveal
some tricky points, if any.




Numerical simulations with Maple

[

forc3 = 0.766 and ¢c5 =-
91 we have the shape of
m( nction (left panel
c 2aUd 0
‘with m(p, t) replaced
JOXGEIAELEDE

The first and the second
spatial derivatives of the m0
function are plotted in
revealing some turning points
where we need special care
with the future numerical
simulations.




Numerical simulations with Maple

8 established, we composed a Maple program for finite =~

‘encing the above equations.

denoted the two unknown functions m(p, t) and h(p, t) whith
rices, mm[l,J] and hh[i,j] respectively.

_-a

__ .".denoted the spatial interval between the points on the p axis
0 =Ap and the time step with dete =A t variables.

I} 1 ately we denoted also the parts from the two above equatlons

—

For the time derivatives we used the forward Euler method (it has the
advantage that one is able to calculate quantities at timestep j + 1 in
terms of only quantities known at timestep j) and for the spatial
derivatives we can use a second-order representation still using only
quantities known at timestep j.




Numerical simulations with Maple

eno” matrices have the shape as :

Now the time integration of the two finite-differenced equations
is straitforward as :

for any time j > 0 if the initial values for hh[i.0] and mm][i,0]
are provided.




Numerical simulations with Maple

_— -F
the above established theoretical steps we proceeded to com-

‘special Maple program (worksheet) for accomplishing the
erical tasks.
, padings, namely the

or the blsurface case equatlons (bisurface eq.m) previously
‘and then the finite-differences discretization of the main
ions :

start;

> re ad("blsurface eqs.m");

= ‘§-eno1[|,J] = ((subs(m(rho,t)=mml[i,j],subs(h(rho,t)=hh[i,j],
_-:__ —— subs(diff(m(rho,t),rho)=(mm[i+1,j]-mm[i1,j])/2/delta,

= - subs(diff(h(rho,t),rho)=(hh[i+1,j]-hh[i-1,j]1)/2/delta,

(subs(diff(m(rho,t),rho,rho)=(mm[i+1,j]-2*mm][i,j]+
mmli-1,j])/delta/delta,eco1)))))))):

And similarly for the eno2 object.




Numerical simulations with Maple

axt lines simply introduce of the initial data (as the function
some checkings of it’s values in different points of the

I'hen comes the establishing of the grid values, the number of
Ats on the axis (n), the values of the values for
> constants and of the spatial interval on the axis (delta):

he ) =((sin(rho)+c3*sin(3*rho)+c5*sin(5*rho))/
(1+3*c3+5*c5))**2;
subs(c3 0.766,c5=-0.091,m0(rho)),rh0=0..10);
:=50;dete:=0.0018;
#=>3:=0.766;c5:=-0.091;delta: =evalf(Pi/n);
a—— ( cq rfac =dete/delta/delta/2;

e —
_i-l--_—_.'l.\_'c =

=

_:;_ﬁer-a series of commands establishing the initial values of main
= matrices, comes the most important part of the program, were we
integrate the two equations :
> tmax:=80 ; for v from 1 to tmax do; for k from 1 to n-v-1 do
> hhini:=eval(subs(i=k,j=v-1,hh[i,j])); mmini:=eval(subs(i=k,j=v-1,mm([i,j]));
> cocol:=eval(subs(i=k,j=v-1,eno1l[i,j]));coco2:=eval(subs(i=k,j=v-1,en02[i,j]));
> hh[k,v]:=eval(hhini+dete*cocol);
»mm[Kk,v]:=eval(mmini+dete*coco2);end do:end do:
and this is all, as for the numerical calculations !l Well, almost !




Numerical vizalisations with Maple

—
- next lines of the program are just a series of plotting
nmands in order to visualise the shape and values ofthe
inown functions, at all the times processed or atdifferent

)r j from 0 to tmax do
Sebefj]:=plot([[r[p],mm[p,j]1$p=0..n],t) od;
_ j:'_‘:i play(seq(bebe[m],m=0..tmax));
= plot([[r[p],mm[p,0]]$p=0..n],t);
&= = plot([[r[p],mm[p,1]]$p=0..n],t);
- e jlot([[r[p],mm[p,tmaXJ]$p 0..nJ,t);

= Here we need plots package and of course the program contains
similar lines for plotting the values for h(p; t)

The rest of the program is mainly dedicated to vizualisations of
the results, several plottings were done, including some series
of pictures for animation movies !




Numerical vizalisations with Maple

riking wiew of the results we used a separate sequence of
IS, where we plotted in 3D figures the time evolution of the
ions m(p:t) and h(p:t), namely

- I
..n-tmax- 1)], k=0. tmax)] surfdata(ccc,axes=BOXED);

[seq([ sea([p,k, evalf(subs(i=p,j=k,hh[i,il))],
| -i.n-tmax-l)], k=0..tmax)]: surfdata(ddd,axes=BOXED);
me evolution of both functions are plotted as a surface in a
f€ having the time as one of the axes. Some examples will be
ttec -in the next slides.

- - -:-
) Py
= -il—-
—I-l'

= = *the stability analysis, we used, in a separate Maple worksheet the
—— von Neumann analysis — other methods are also possible. For our case
~ of a 2-surface of revolution we established the Courant factor as :

For both finite differences equations !
Special care also we had for the boundary values where we used
specific method in every case — this is to be reported elsewhere !




Numerical vizualisations with Maple

C3=0,766 C5= -0.091
N=50 At=0.002
. $=0.06283185308
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Numerical Vizualiﬁg;q‘)iwith Maple - Movies
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3-surfaces

The pmchlng behavior of this surface under unnormalized Ricci flow (1)
was studied by Rubinstein and Sinclair starting at t = 0. Also this time an
explicit finite-differences schema was used. The instabilities forced to
restrict to fairly large time steps and they were forced to run their code
only to a restricted (even not at equal times) number of steps. These
results were called by the authors as “qualittively correct” !!!




3-surfaces in Maple

.

0 pgrams in Maple (as described before) for this type of
‘aces we were able, after a von Neumann stability analysis to
blish a Courant factor and to run properly a number of iterations

i

al= a 2

<The m(p) function (left)
and the Ricci scalar (right)
for a 3-surface of revo-
lution under Ricci flow




Corseted sphere surfaces

P —

-

r study on a critical behaviour of 3-surfaces under Ricci flow,
ikle and Isenberg (GI) used a so called corseted sphere

)etry having :

l|J, 0, @) are standard angular coordinates on the three sphere.
8 metric functions X and W are functions only of y. W = X and X is
*choosed so that :

e
el L g -
—

—_—

_-—__
-

Here A is a constant, which parameterizes the degree of corseting
for these geometries.




Corseted spheretu_gﬁ‘cf

erical investigations, GI used the DeTurck flow, where ...
equations are strong parabolic and a finite differences
)a for the time evolution and centered finite differences for the
| derivatives. The numerical investigations pointed out a
1e fc \ parec = 0.1639) dividing the behavior
he flow into two regimes :
ocritical one - for larger A the flow converges to a round sphere
ipercritical one - for smaller A the flow goes to a S2 neck
ing singularity

Subcritical (left) and supercritical
(right) behaviour of Rs2 under
Ricci flow for a corseted sphere
(courtesy of David Garfinkle)

At the critical value for A the flow approaches a “javelin” geometry,
marked by curvature singularities at the poles, with roughly uniform
curvature between the poles. This javelin geometry corresponds to the
“type 3" singularity described by Hamilton and discussed by Chow.




Corseted spheretu_gﬁ‘cf

arfinkle and Isenberg is a typical example of how the ™
in numerlcal relativity can be applied to Ricci flow
The DeTurk “trick” used to make the PDE strongly
the ADM-BSSN version of humerical relativty.

aee !
.

:zo th|s, we still think that the use of initial Ricci flow
ions (normalised or not) can be used, as the explicit finite
irences schema can be done stable — a Courant factor in certain
nditions is possible to exhibit for this schema — as we proved using
our I aple programs. This is similar to the “pure” ADM method in NR.

1 et

— We will developp this idea in our next investigations.

But this is an open question from now one, and the results will be
reported elsewhere... I hope'!
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