Supersymmetric cascade decays

based on: B. K. Gjelsten, D. J. Miller, P. Osland

JHEP 12 (2004) 003 [hep-ph/0410303], hep-ph/0501033

Per Osland, University of Bergen

Outline

- Introduction
- Graphic overview of parameter space
- Kinematical endpoints (squark chain)
- Inverting endpoint formulas
- Fitting MC data: precision
- 10,000 LHC experiments: precision
- LC input: high precision
- gluino chain (b-tagging)

Supersymmetry may be realized at the LHC

Unstable particles produced copiously, cascade decays, e.g.

$$\tilde{q} \rightarrow \tilde{\chi}_2^0 q \rightarrow \tilde{l} l q \rightarrow \tilde{\chi}_1^0 l l q$$

Challenge: determine masses with high precision

Refs: Baer et al, hep-ph/9512383; Hinchliffe et al, hep-ph/9610544;

Bachacou et al, hep-ph/9907518; Polesello, ATLAS Int Note 1997;

Allanach et al, hep-ph/0007009; Gjelsten et al, ATLAS Note 2004;

Chiorboli, Tricomi, CMS Note 2004

mSUGRA (CMSSM)

Unification at high energies, fewer parameters

$$m_0 \quad m_{1/2} \quad A_0 \quad \tan \beta \quad \operatorname{sign} \mu$$

• Snowmass Points and Slopes: Allanach et al, hep-ph/0202233: SPS Ia, SPS Ib, SPS 3, SPS 5.

Other set: Battaglia et al, hep-ph/0306219

• WMAP constraints: Bennett et al, astro-ph/0302207; Spergel et al, astro-ph/0302209

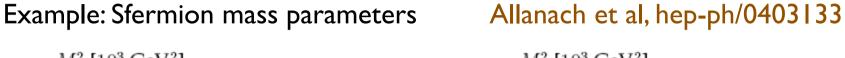
footnote: Benchmark Points

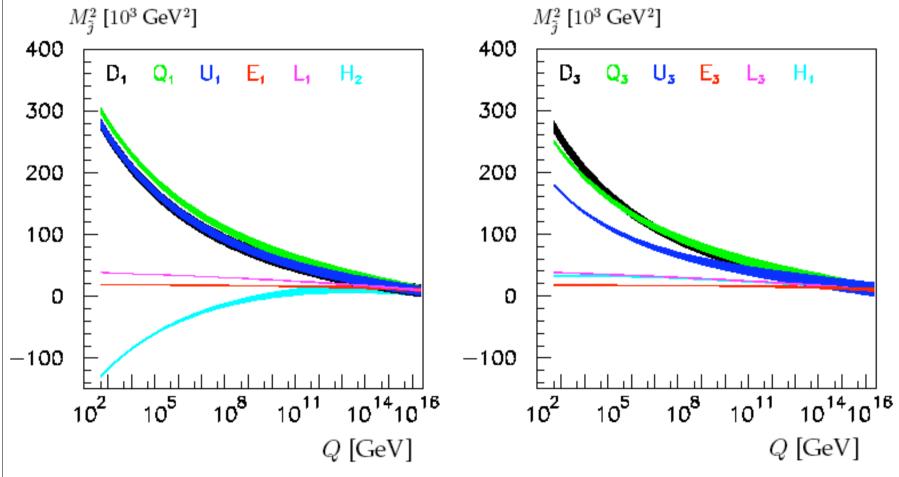
- LHC Points ('SUGRA'): Hinchliffe et al, hep-ph/9610544: Point 1, Point 2, Point 3, Point 4, Point 5
- Post-LEP Benchmarks ('CMSSM'): Battaglia et al, hep-ph/0106204: A, B, C, ..., M

- Snowmass Points and Slopes ('mSUGRA'): Allanach et al, hep-ph/0202233: SPS Ia, SPS Ib, SPS 2, SPS 3, SPS 4, SPS 5, SPS 6, ..., SPS 9
- Post-WMAP Benchmarks ('CMSSM'): Ellis et al, hep-ph/0303043, Battaglia et al hep-ph/0306219: A', B', C', ..., M'

Mutations: Point $5 \rightarrow B \rightarrow SPS Ia \rightarrow B'$

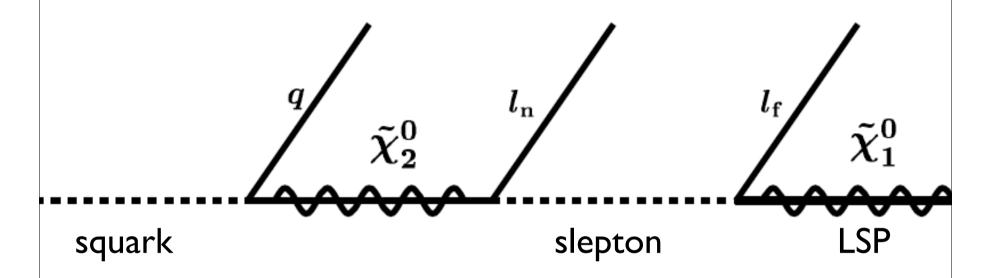
Precision in masses allows extrapolation to Unification scale





Precision of order per cent achievable with LHC plus LC

"Easy" SPS Ia squark cascade

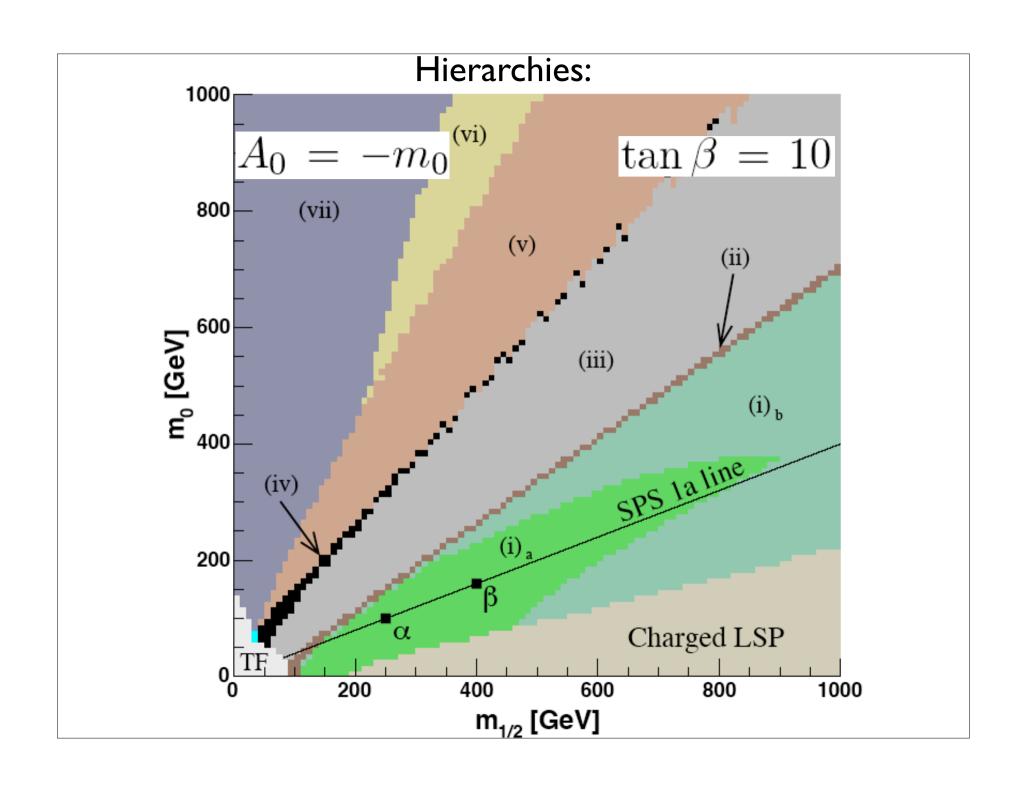


Detect: quark jet and two leptons

Aim: determine squark, slepton and neutralino masses

Question: Is this mass hierarchy "typical"?

Want "heavy" gluino and "heavy" neutralino $ilde{\chi}^0_2$



heavy gluino

heavy neutralino

(i)
$$\tilde{g} > \max(\tilde{d}_L, \tilde{u}_L, \tilde{b}_1, \tilde{t}_1)$$
 and $\tilde{\chi}_2^0 > \max(\tilde{l}_R, \tilde{\tau}_1)$
(ii) $\tilde{g} > \max(\tilde{d}_L, \tilde{u}_L, \tilde{b}_1, \tilde{t}_1)$ and $\tilde{l}_R > \tilde{\chi}_2^0 > \tilde{\tau}_1$

(ii)
$$\tilde{g} > \max(\tilde{d}_L, \tilde{u}_L, \tilde{b}_1, \tilde{t}_1)$$
 and $\tilde{l}_R > \tilde{\chi}_2^0 > \tilde{\tau}_1$

(iii)
$$\tilde{g} > \max(\tilde{d}_L, \tilde{u}_L, \tilde{b}_1, \tilde{t}_1)$$
 and $\min(\tilde{l}_R, \tilde{\tau}_1) > \tilde{\chi}_2^0$

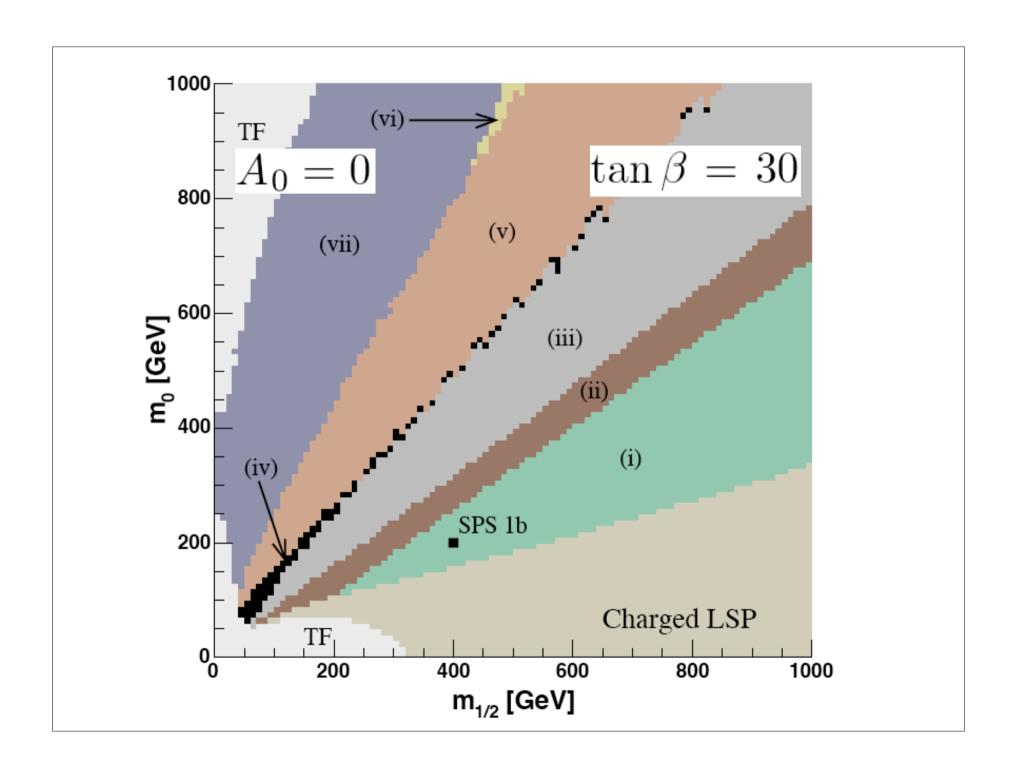
(iv)
$$\tilde{d}_L > \tilde{g} > \max(\tilde{u}_L, \tilde{b}_1)$$
 and $\min(\tilde{l}_R, \tilde{\tau}_1) > \tilde{\chi}_2^0$

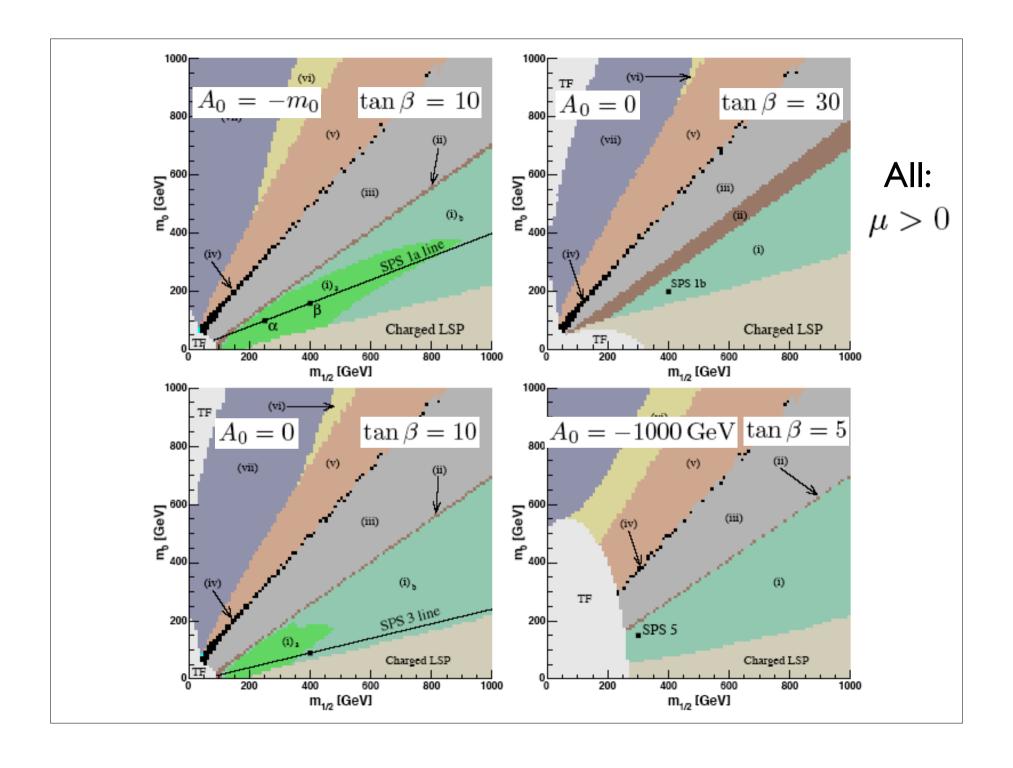
(v)
$$\min(\tilde{d}_L, \tilde{u}_L) > \tilde{g} > \tilde{b}_1$$
 and $\min(\tilde{l}_R, \tilde{\tau}_1) > \tilde{\chi}_2^0$

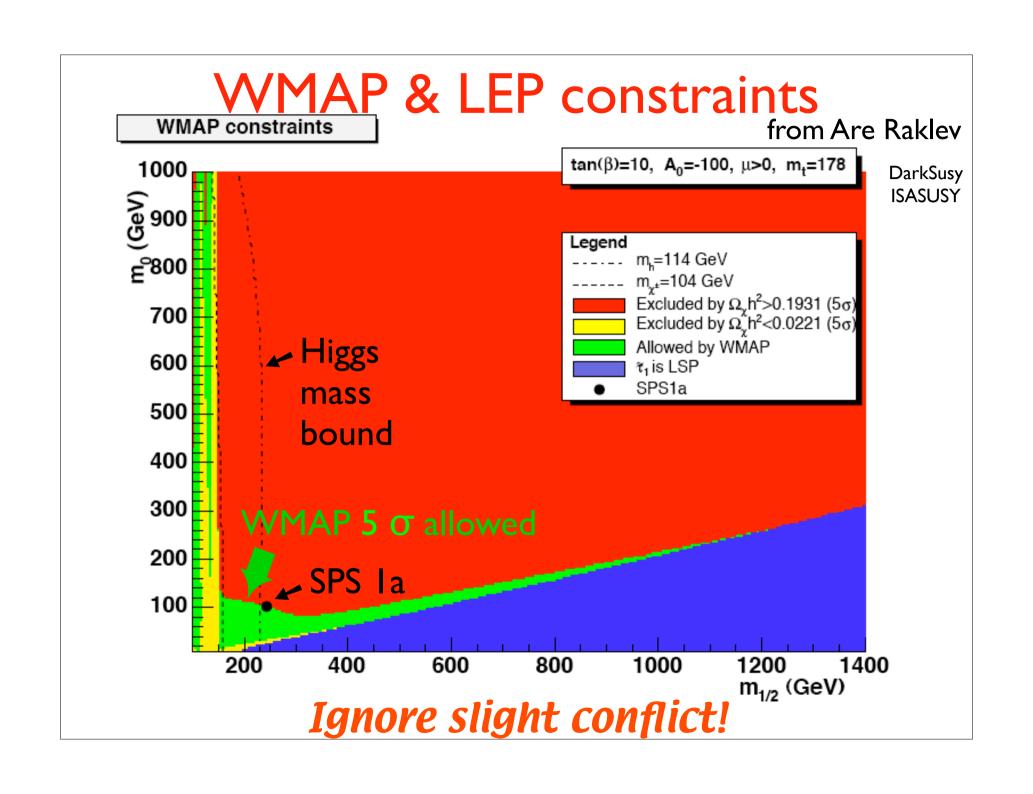
(vi)
$$\min(\tilde{d}_L, \tilde{u}_L, \tilde{b}_1) > \tilde{g} > \tilde{t}_1$$
 and $\min(\tilde{l}_R, \tilde{\tau}_1) > \tilde{\chi}_2^0$

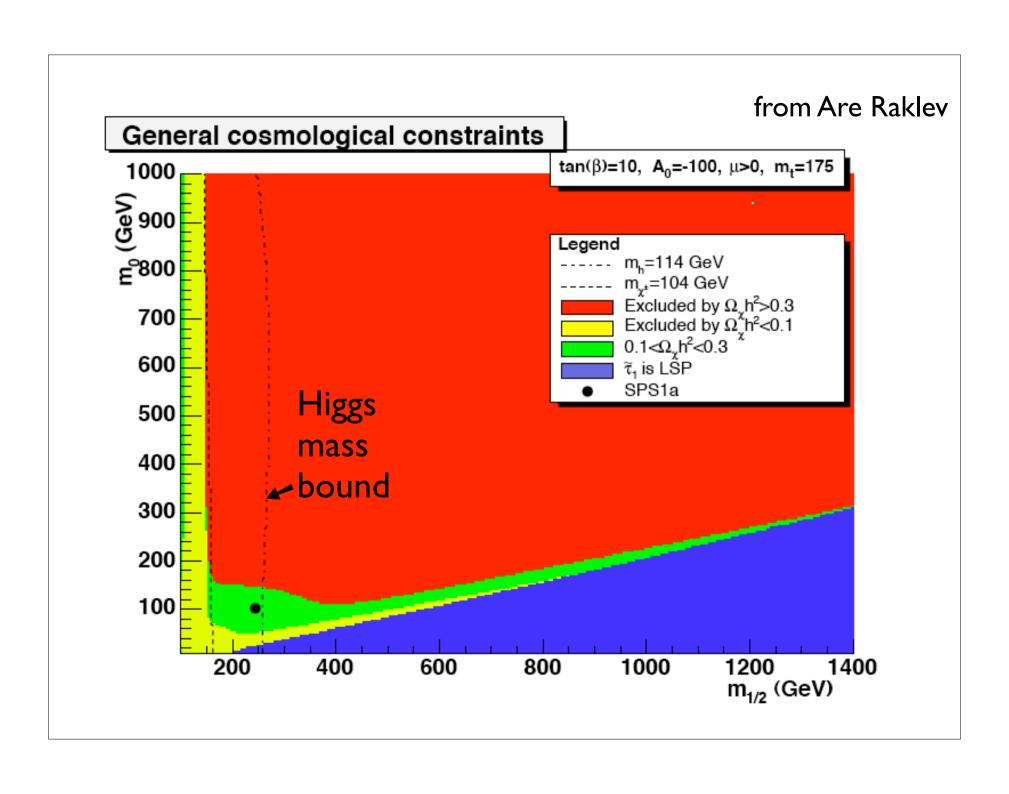
(vii)
$$\min(\tilde{d}_L, \tilde{u}_L, \tilde{b}_1, \tilde{t}_1) > \tilde{g}$$
 and $\min(\tilde{l}_R, \tilde{\tau}_1) > \tilde{\chi}_2^0$

heavy gauginos, $\tilde{g}, \tilde{\chi}_2^0$ lower right









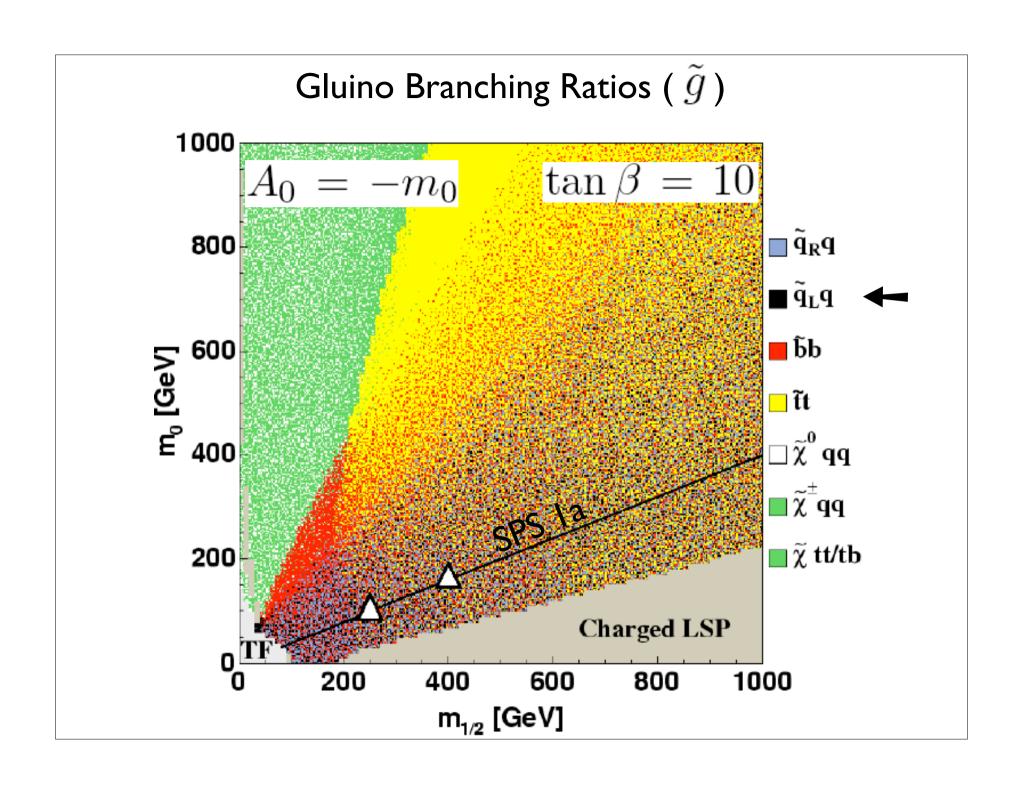
Next question:

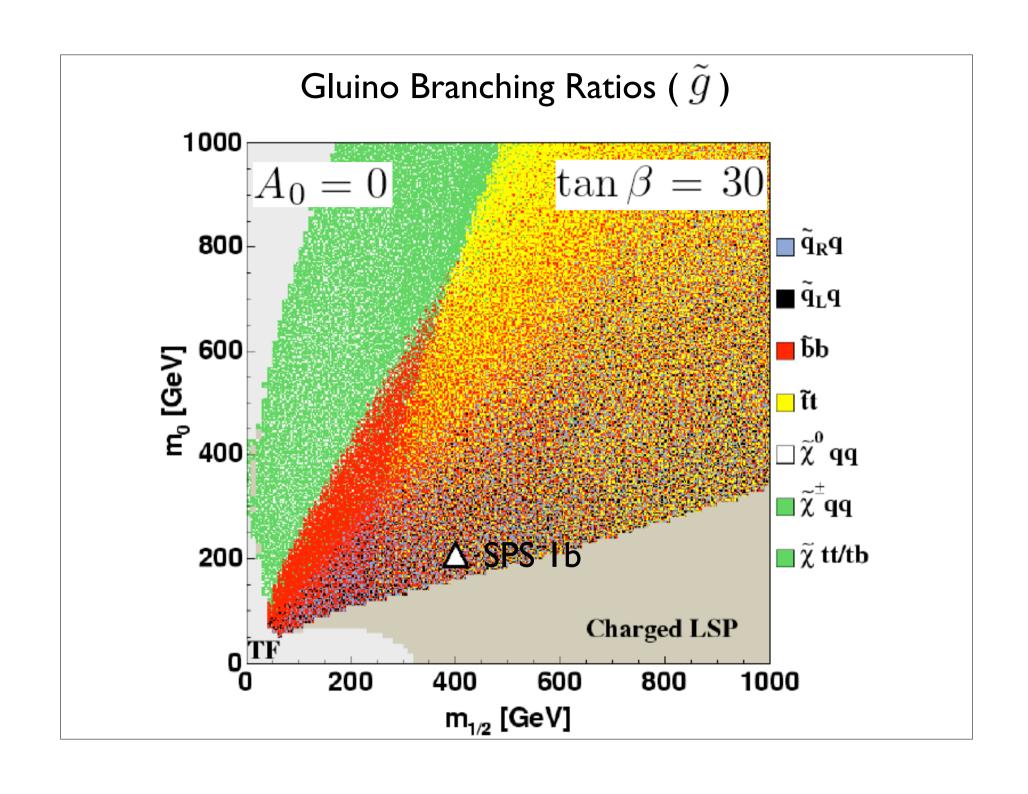
Given "correct" hierarchy,

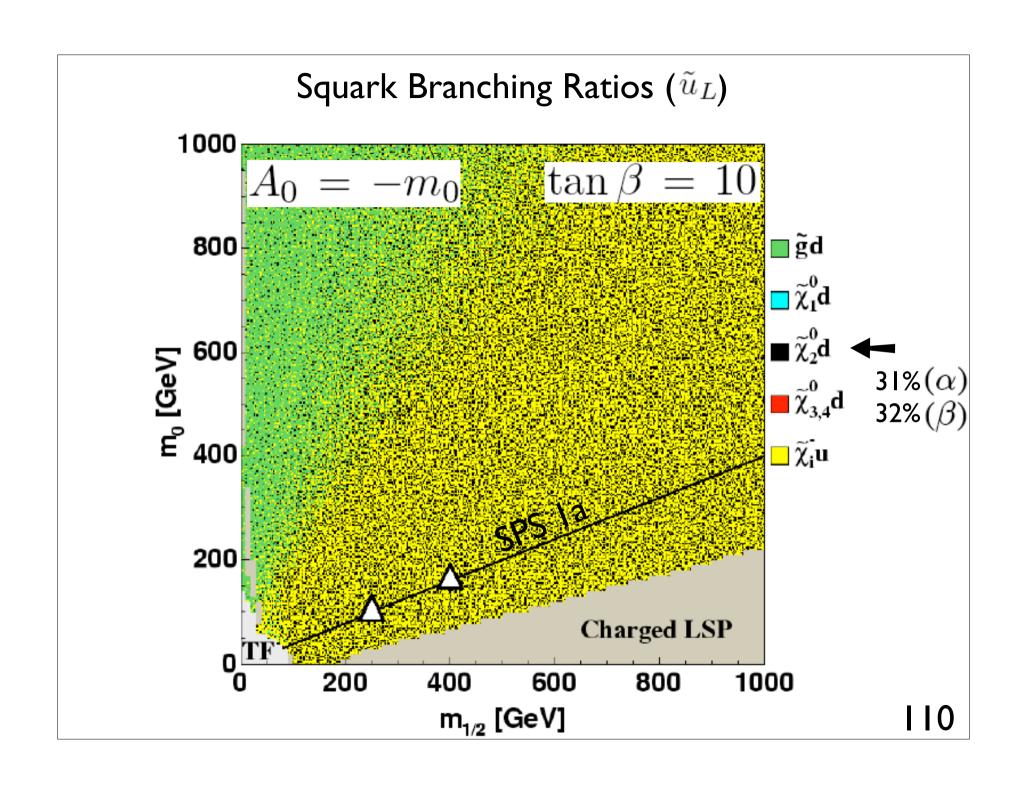
$$m_{\tilde{g}} > m_{\tilde{q}_L} > m_{\tilde{\chi}_2^0} > m_{\tilde{l}_R} > m_{\tilde{\chi}_1^0}$$

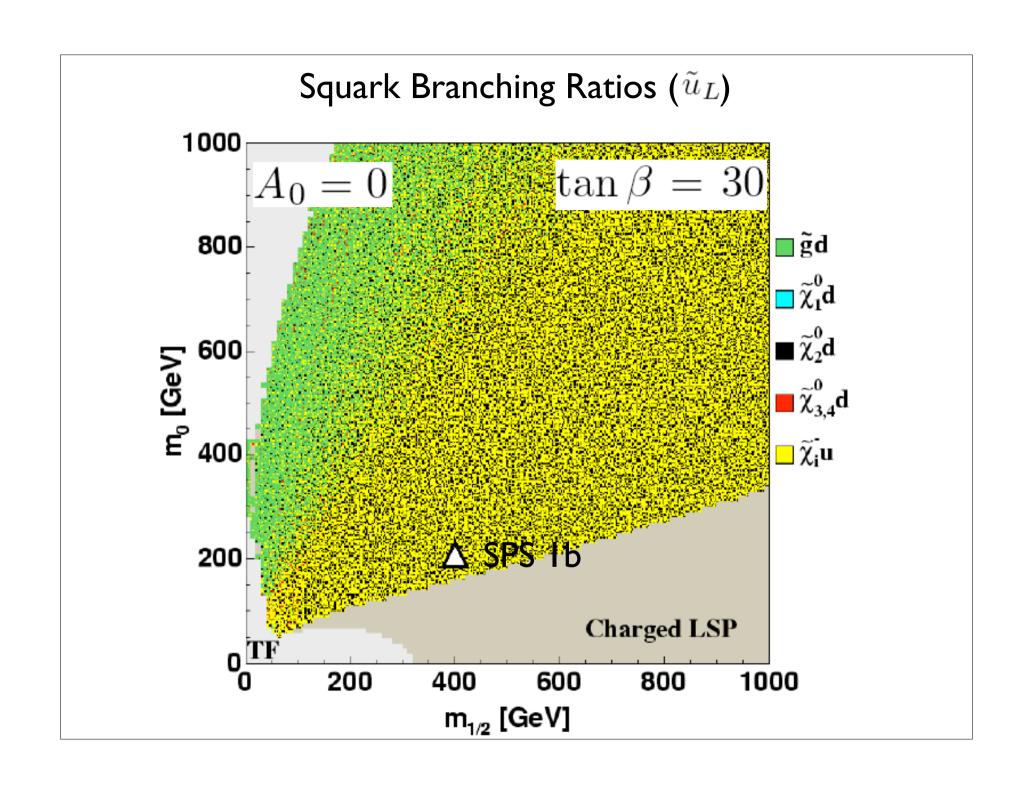
is there enough BR?

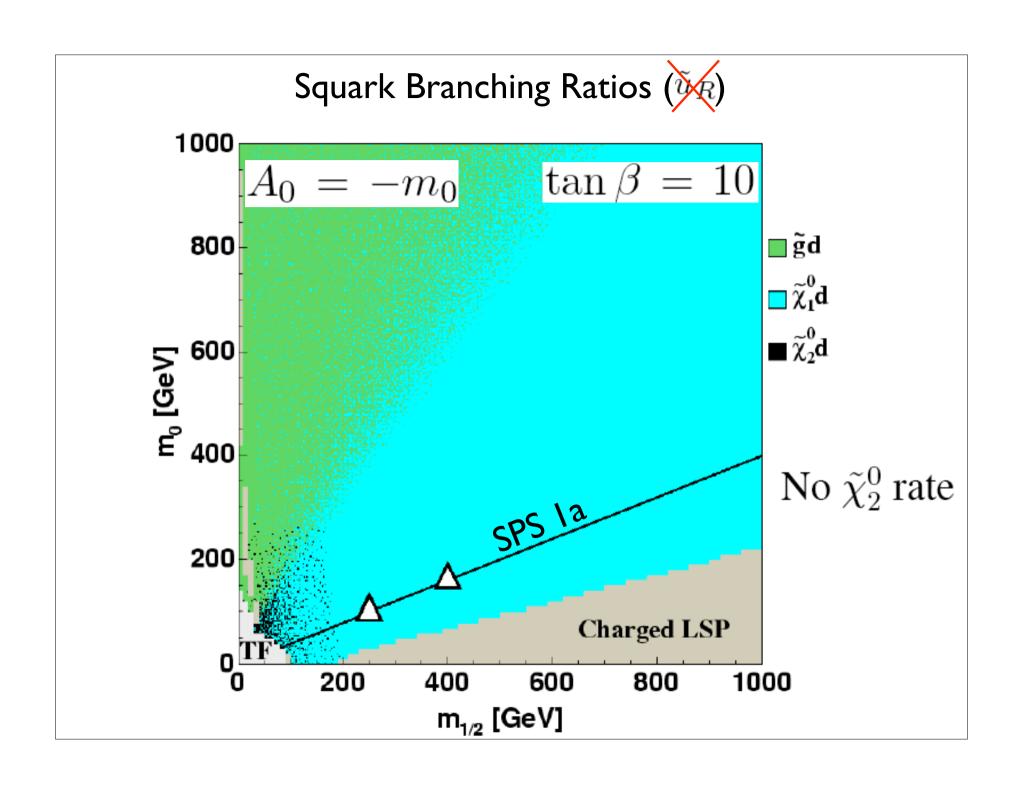
- Does the squark have significant BR to neutralino and quark?
- Does the neutralino have significant BR to slepton and lepton?

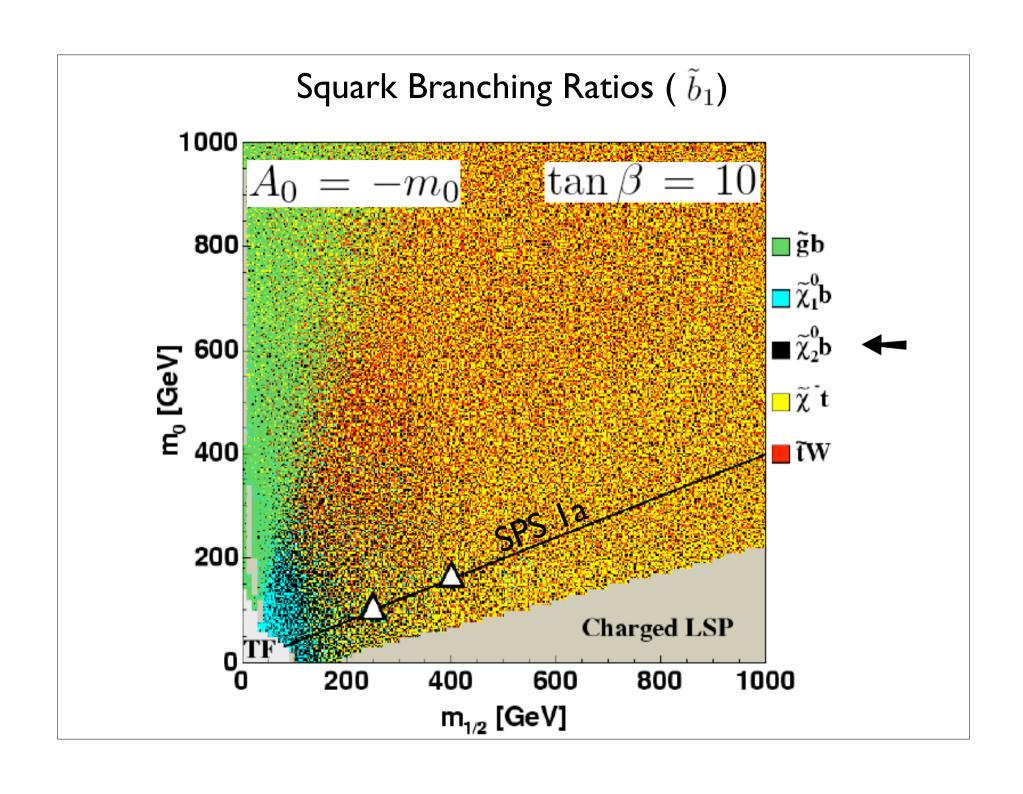


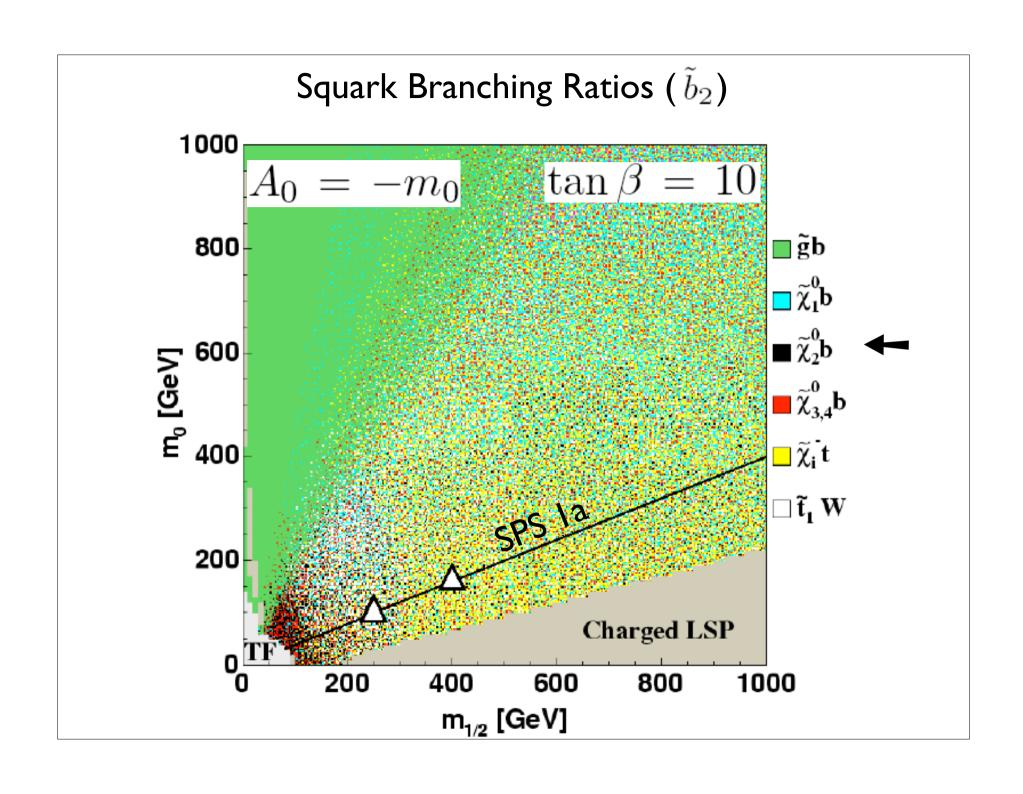


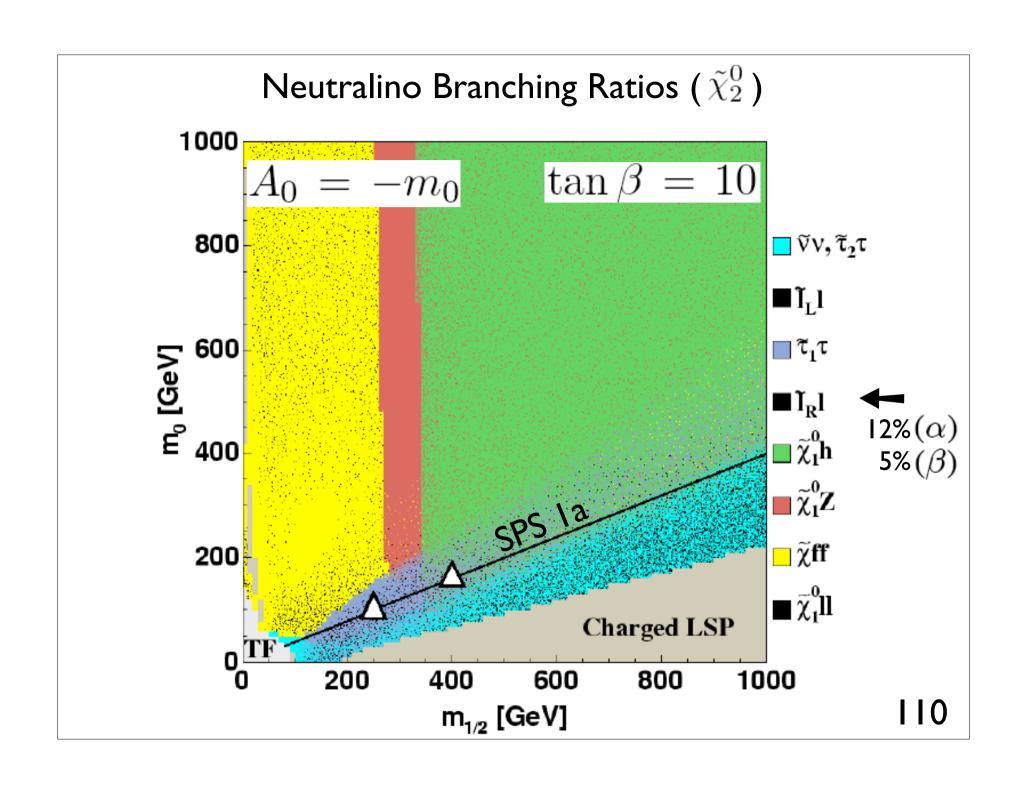












SPS Ia (line)

$$m_0 = -A_0 = 0.4 \, m_{1/2}$$

 $\tan \beta = 10, \qquad \mu > 0$

Two particular points on the line:

$$(\alpha): m_0 = 100 \text{ GeV}, m_{1/2} = 250 \text{ GeV}$$

$$(\beta): m_0 = 160 \text{ GeV}, m_{1/2} = 400 \text{ GeV}$$

Spectrum

Point	\tilde{g}	$ ilde{d}_L$	\tilde{d}_R	$ ilde{u}_L$	\tilde{u}_R	$ ilde{b}_2$	\widetilde{b}_1	\tilde{t}_2	\widetilde{t}_1
(α)	595.2	543.0	520.1	537.2	520.5	524.6	491.9	574.6	379.1
(β)	915.5	830.1	799.5	826.3	797.3	800.2	759.4	823.8	610.4
	\widetilde{e}_L	$ ilde{e}_R$	$ ilde{ au}_2$	$ ilde{ au}_1$	$\tilde{\nu}_{e_L}$	$\tilde{\nu}_{ au_L}$		H^{\pm}	A
(α)	202.1	143.0	206.0	133.4	185.1	185.1		401.8	393.6
(β)	315.6	221.9	317.3	213.4	304.1	304.1		613.9	608.3
	$\tilde{\chi}_4^0$	$ ilde{\chi}^0_3$	$ ilde{\chi}^0_2$	$\tilde{\chi}_1^0$	$\tilde{\chi}_2^{\pm}$	$\tilde{\chi}_1^{\pm}$		H	h
(α)	377.8	358.8	176.8	96.1	378.2	176.4		394.2	114.0
(β)	553.3	538.4	299.1	161.0	553.3	299.0		608.9	117.9

as determined by ISASUSY 7.58 by integrating RGE's

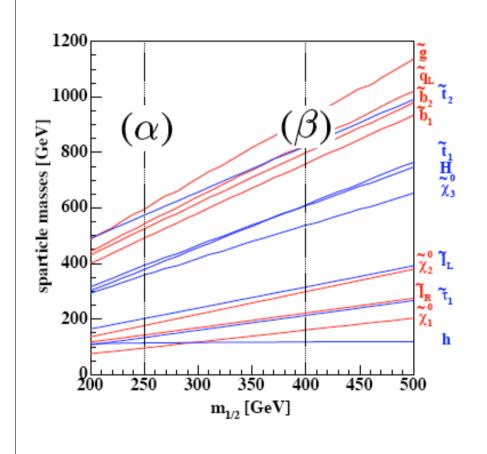
in **bold**: particles used in study

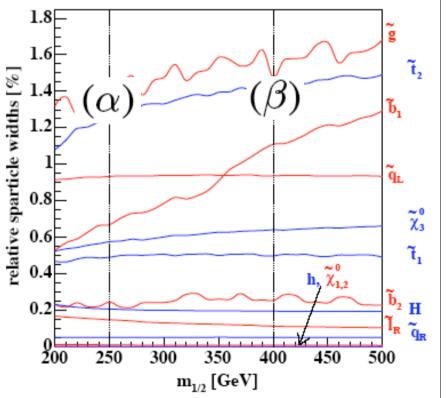
SPS Ia line

Masses

Widths

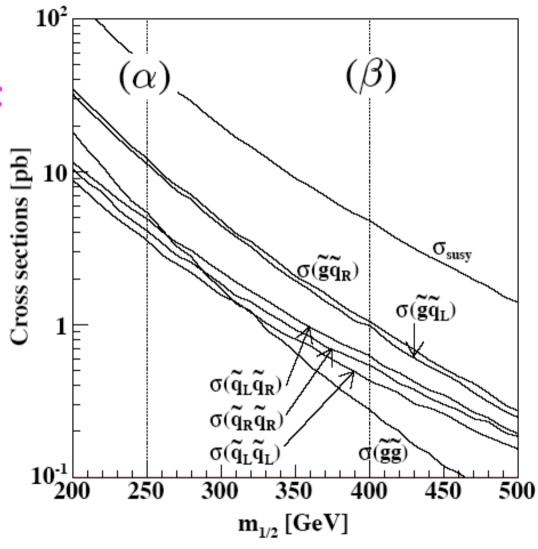
ISASUSY 7.58





~1% of mass

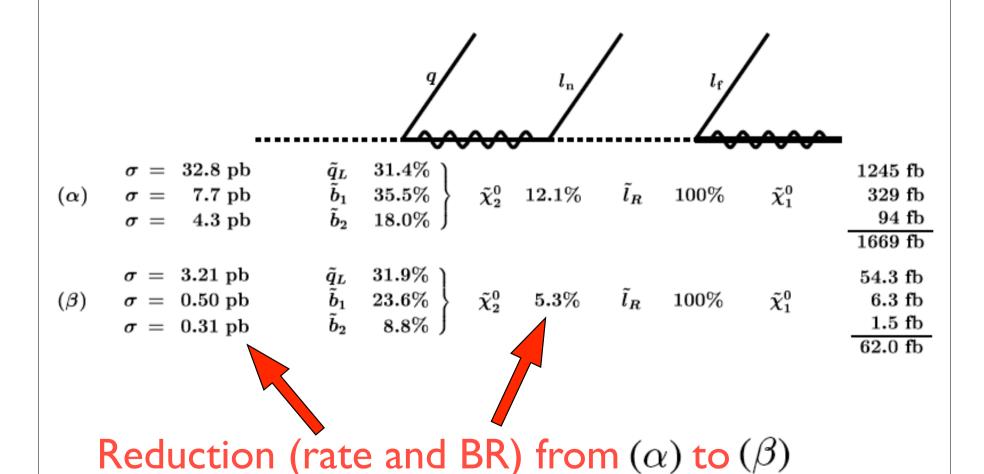
squark is often
produced together
with gluino,
or from gluino decay



[pb]

	$\sigma(SUSY)$	$\sigma(\tilde{g}\tilde{g})$	$\sigma(\tilde{g}\tilde{q}_L)$	$\sigma(\tilde{g}\tilde{q}_R)$	$\sigma(\tilde{q}_L\tilde{q}_L)$	$\sigma(\tilde{q}_L\tilde{q}_R)$	$\sigma(\tilde{q}_R\tilde{q}_R)$
(α)	49.3	5.3	11.4	12.3	3.5	4.8	4.1
(β)	4.76	0.29	0.97	1.06	0.44	0.61	0.53

Quantifying the cascade:



Kinematics - lepton pair (simple example):

$$ilde{\chi}_2^0 o ilde{l}_R l_{
m n}$$
 "n" = "near" $m_{ ilde{\chi}_2^0}^2 = (p_{ ilde{l}_R} + p_{l_{
m n}})^2 = m_{ ilde{l}_R}^2 + 2p_{l_{
m n}} \cdot p_{ ilde{l}_R}$

Rest frame of
$$\tilde{l}_R$$
: $|\mathbf{p}_{l_{\mathrm{n}}}| = \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2}{2m_{\tilde{l}_R}}$

$$ilde l_R o ilde \chi_1^0 l_{
m f}$$
 "f" = "far"
$$m_{ ilde \chi_1^0}^2 = (p_{ ilde l_R} - p_{l_{
m f}})^2 = m_{ ilde l_R}^2 - 2p_{l_{
m f}} \cdot p_{ ilde l_R}$$

Rest frame of
$$\tilde{l}_R$$
: $|\mathbf{p}_{l_{\mathrm{f}}}| = \frac{m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2}{2m_{\tilde{l}_R}}$

Maximum di-lepton mass:

Back-to-back in \tilde{l}_R Rest Frame:

$$(m_{ll}^{\max})^2 = 4|\mathbf{p}_{l_n}||\mathbf{p}_{l_f}| = \frac{(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2)(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{l}_R}^2}$$

Prototype of "endpoint formulas"

One kinematical endpt is related to various (3) masses of unstable particles:

$$m_{ ilde{\chi}^0_2}$$
 $m_{ ilde{l}_R}$ $m_{ ilde{\chi}^0_1}$

Need more such formulas!

Add the squark:

$$\tilde{q}_L \to \tilde{\chi}_2^0 \, q \to \tilde{l}_R \, q \, l_{
m n} \to \tilde{\chi}_1^0 \, q \, l_{
m n} \, l_{
m f}$$



More invariants and endpoints:

$$m_{qll}$$
 $m_{ql_{
m n}}$ $m_{ql_{
m f}}$ m_{ll}

Four endpoints and four masses:

$$m_{ ilde{q}_L}$$
 $m_{ ilde{\chi}_2^0}$ $m_{ ilde{l}_R}$ $m_{ ilde{\chi}_1^0}$

Complication 1:

The two leptons can not be distinguished For each event, form

$$m_{ql({
m low})} < m_{ql({
m high})}$$
 well defined

Complication 2:

For some invariants, there are multiple cases: endpoint formula depends on mass ratios

Complication 3:

Multiple squark masses; widths

Complication 4:

Endpoints not always linearly independent

B.C. Allanach et al, hep-ph/0007009 (conditions rephrased):

$$(m_{ll}^{\max})^2 = \frac{\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2\right) \left(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{l}_R}^2} \qquad \text{one case}$$

$$mass \ ratios \ of \ adjacent \ sparticles \ in \ chain}$$

$$(m_{qll}^{\max})^2 = \begin{cases} \frac{\left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right) \left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{\chi}_2^0}^2} & \text{for} \quad \frac{m_{\tilde{q}_L}}{m_{\tilde{\chi}_2^0}} > \frac{m_{\tilde{l}_R}}{m_{\tilde{\chi}_1^0}} & (1) \\ \frac{\left(m_{qll}^2 - m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_2^0}^2 m_{\tilde{l}_R}^2\right) \left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2\right)}{m_{\tilde{\chi}_2^0}^2 m_{\tilde{l}_R}^2} & \text{for} \quad \frac{m_{\tilde{\chi}_2^0}}{m_{\tilde{l}_R}} > \frac{m_{\tilde{l}_R}}{m_{\tilde{\chi}_1^0}} \frac{m_{\tilde{q}_L}}{m_{\tilde{\chi}_2^0}} & (2) \\ \frac{\left(m_{\tilde{q}_L}^2 - m_{\tilde{l}_R}^2\right) \left(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{l}_R}^2} & \text{for} \quad \frac{m_{\tilde{l}_R}}{m_{\tilde{\chi}_1^0}} > \frac{m_{\tilde{q}_L}}{m_{\tilde{\chi}_1^0}} \frac{m_{\tilde{q}_L}}{m_{\tilde{l}_R}} & (3) \\ \left(m_{\tilde{q}_L} - m_{\tilde{\chi}_1^0}\right)^2 & \text{otherwise} & (4) \end{cases}$$

four cases

$$\begin{pmatrix} (m_{ql_{\rm l}}^{\rm max}, m_{ql_{\rm f}}^{\rm max}) & \text{for} & 2m_{\tilde{l}_R}^2 > m_{\tilde{\chi}_1^0}^2 + m_{\tilde{\chi}_2^0}^2 > 2m_{\tilde{\chi}_1^0} m_{\tilde{\chi}_2^0} & (1) \\ (m_{ql({\rm eq})}^{\rm max}, m_{ql_{\rm f}}^{\rm max}) & \text{for} & m_{\tilde{\chi}_1^0}^2 + m_{\tilde{\chi}_2^0}^2 > 2m_{\tilde{l}_R}^2 > 2m_{\tilde{\chi}_1^0} m_{\tilde{\chi}_2^0} & (2) \\ (m_{ql({\rm eq})}^{\rm max}, m_{ql_{\rm n}}^{\rm max}) & \text{for} & m_{\tilde{\chi}_1^0}^2 + m_{\tilde{\chi}_2^0}^2 > 2m_{\tilde{\chi}_1^0} m_{\tilde{\chi}_2^0} > 2m_{\tilde{l}_R}^2 & (3) \\ \end{pmatrix}$$

$$\text{three cases}$$

where
$$(m_{ql_n}^{\max})^2 = \frac{(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2)(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2)}{m_{\tilde{\chi}_2^0}^2}$$

$$(m_{ql_f}^{\max})^2 = \frac{(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2)(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{l}_R}^2}$$

$$(m_{ql(eq)}^{\max})^2 = \frac{(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2)(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2)}{(2m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2)}$$

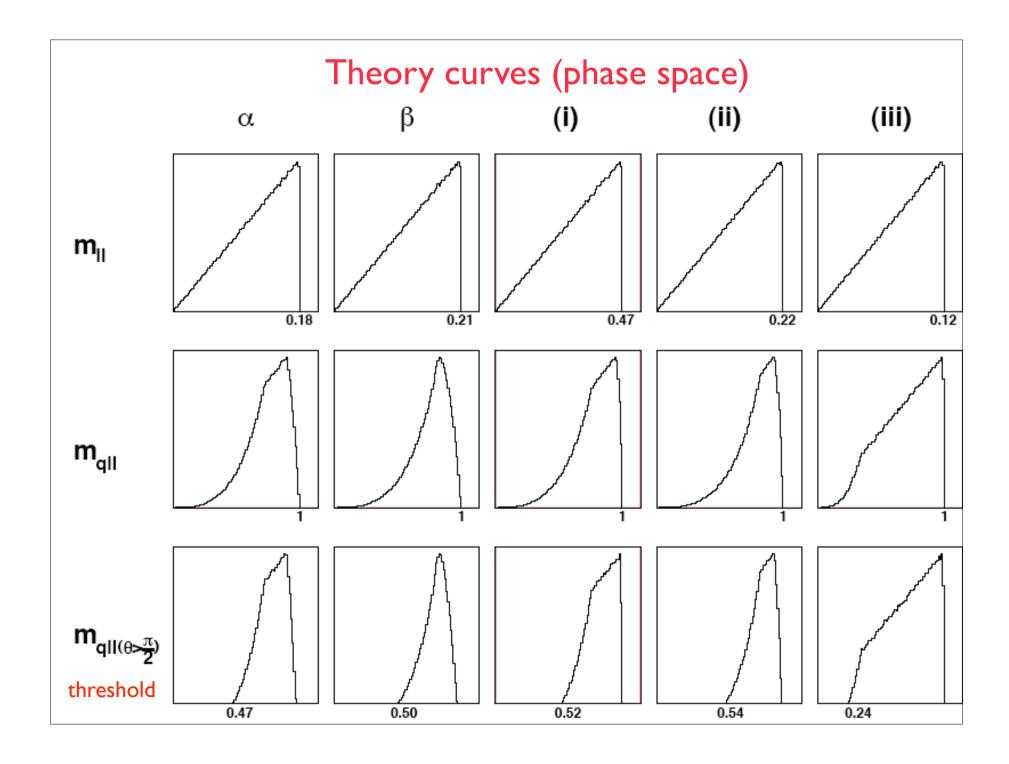
Finally:

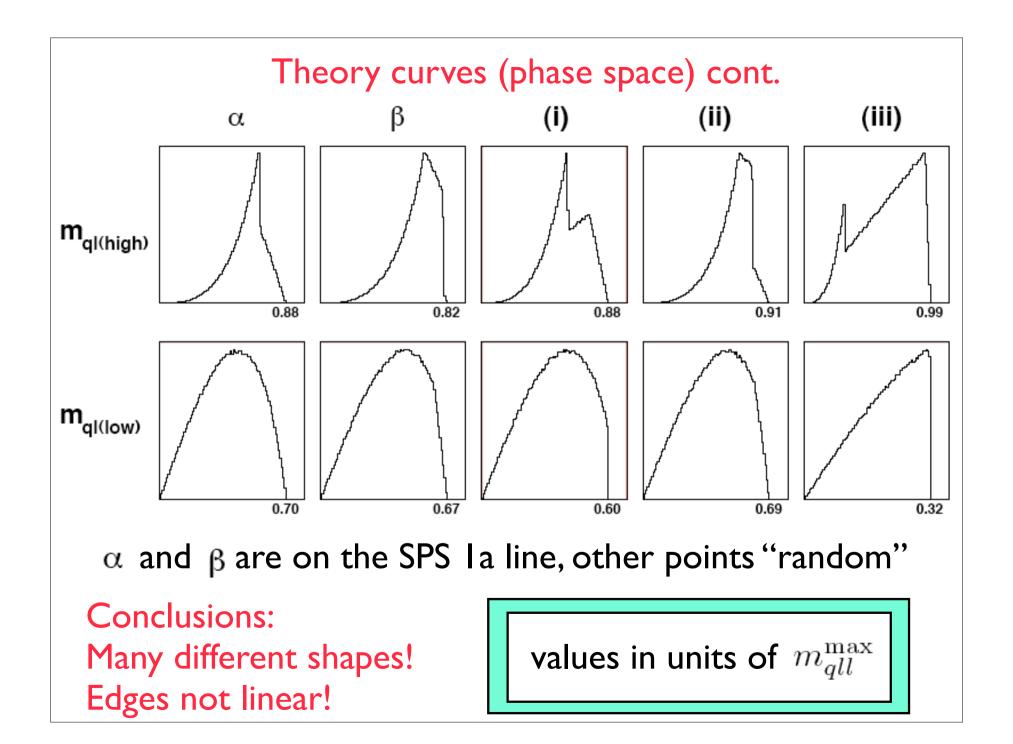
$$\begin{split} \left(m_{qll(\theta>\frac{\pi}{2})}^{\min}\right)^2 &= \left[\left(m_{\tilde{q}_L}^2 + m_{\tilde{\chi}_2^0}^2\right)\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2\right)\left(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right) \right. \\ & - \left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right)\sqrt{\left(m_{\tilde{\chi}_2^0}^2 + m_{\tilde{l}_R}^2\right)^2\left(m_{\tilde{l}_R}^2 + m_{\tilde{\chi}_1^0}^2\right)^2 - 16m_{\tilde{\chi}_2^0}^2m_{\tilde{l}_R}^4m_{\tilde{\chi}_1^0}^2} + \\ & + 2m_{\tilde{l}_R}^2\left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right)\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\chi}_1^0}^2\right)\right]\left(4m_{\tilde{l}_R}^2m_{\tilde{\chi}_2^0}^2\right)^{-1} \qquad \text{one case} \end{split}$$

 θ is opening angle between leptons in \tilde{l}_R rest frame

Over-all: 4×3 cases, denoted (1,1), (1,2), etc.

(9 of 12 are realized)





Inverting endpoint formulas

Endpoint formulas can be inverted

Complications:

nonlinear (rational, sqrt) several cases (mass regions) $m_{ql(\mathrm{low})}^{\mathrm{max}}, m_{ql(\mathrm{high})}^{\mathrm{max}}$ three cases

$$m_{qll}^{
m max}$$
 four cases $m_{ql({
m low})}^{
m max}, m_{ql({
m high})}^{
m max}$ three cases

Example:

Region (1,1):
$$m_{\tilde{\chi}_{1}^{0}}^{2} = \frac{(b^{2} - d^{2})(b^{2} - c^{2})}{(c^{2} + d^{2} - b^{2})^{2}} a^{2}$$

$$m_{qll}^{\max} \qquad m_{\tilde{l}_{R}}^{2} = \frac{c^{2}(b^{2} - c^{2})}{(c^{2} + d^{2} - b^{2})^{2}} a^{2}$$

$$m_{\tilde{q}l(\text{low})}^{\max}, m_{ql(\text{high})}^{\max} \qquad m_{\tilde{\chi}_{2}^{0}}^{2} = \frac{c^{2}d^{2}}{(c^{2} + d^{2} - b^{2})^{2}} a^{2}$$

$$m_{\tilde{q}L}^{2} = \frac{c^{2}d^{2}}{(c^{2} + d^{2} - b^{2})^{2}} (c^{2} + d^{2} - b^{2} + a^{2})$$

$$a = m_{ll}^{\rm max} \,, \qquad b = m_{qll}^{\rm max} \,, \qquad c = m_{ql({\rm low})}^{\rm max} \,, \qquad d = m_{ql({\rm high})}^{\rm max} \,. \label{eq:alpha}$$

Inverting endpt formulas, cont

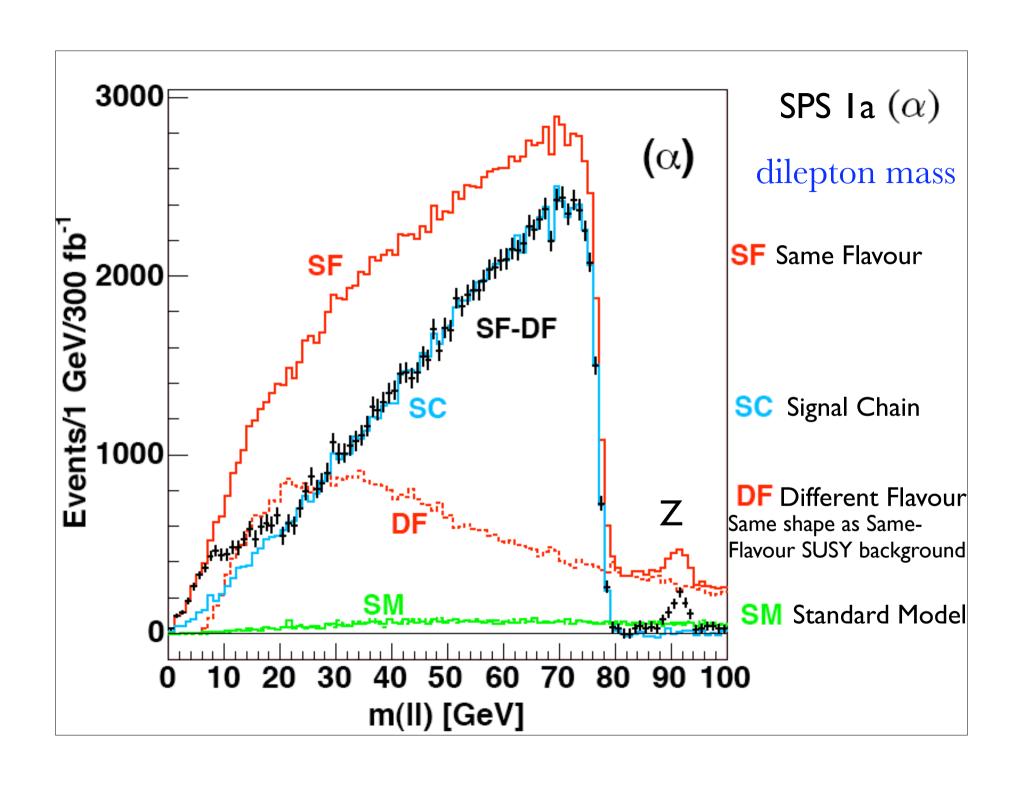
- If 4 endpts & 4 masses, (if linear) unique solution
- May have more endpts, system overconstrained
- Endpts have (different) uncertainties
- Use inversion formulas for start point of fit
- Composite formulas: multiple solutions!

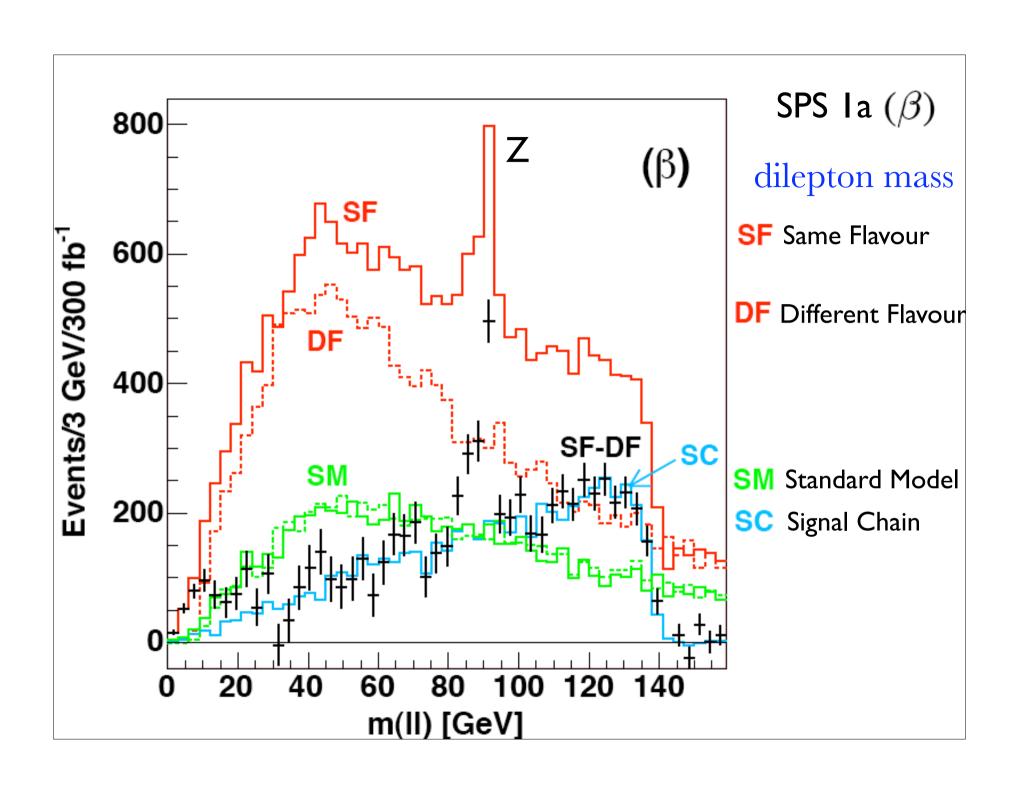
LHC simulation

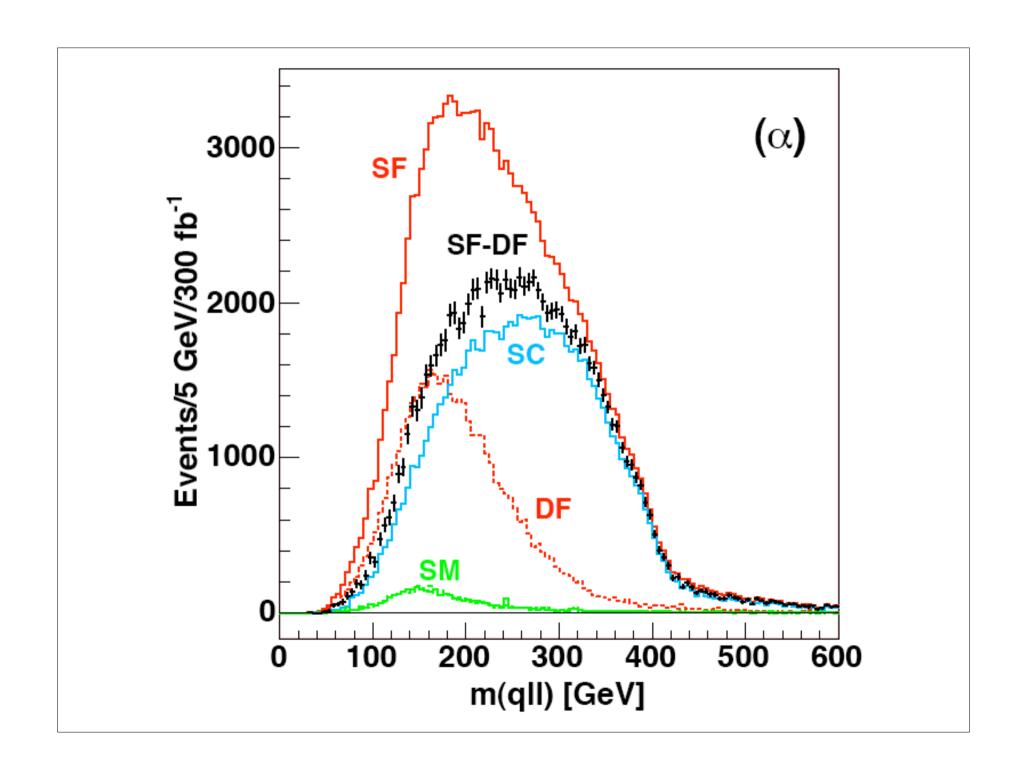
- ISAJET 7.58 defines low-energy model
- PYTHIA 6.2 with CTEQ 5L: Monte Carlo sample
- ATLFAST 2.60 simulates ATLAS detector
- precuts:
 - At least three jets, satisfying: $p_T^{\text{jet}} > 150, 100, 50 \text{ GeV}$
 - $-E_{T,\text{miss}} > \max(100 \text{ GeV}, 0.2M_{\text{eff}})$ with $M_{\text{eff}} \equiv E_{T,\text{miss}} + \sum_{i=1}^{3} p_{T,i}^{\text{jet}}$
 - Two isolated opposite-sign same-flavour leptons (e or μ), satisfying $p_T^{\text{lep}} > 20, 10 \text{ GeV}$

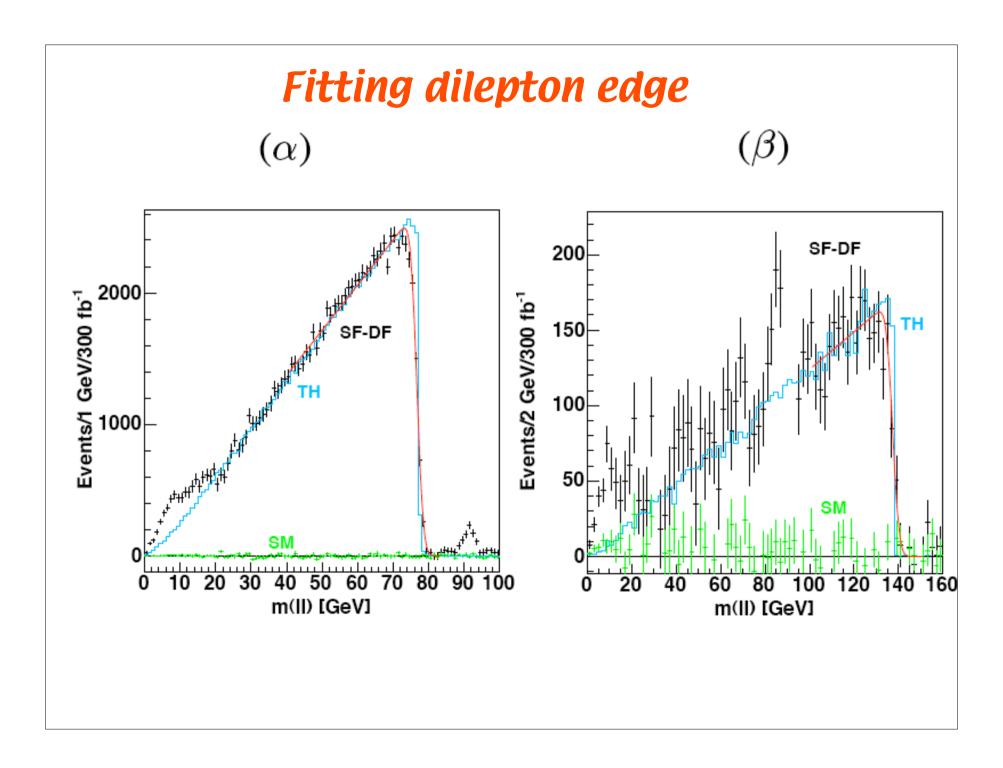
SM background: 95% tt

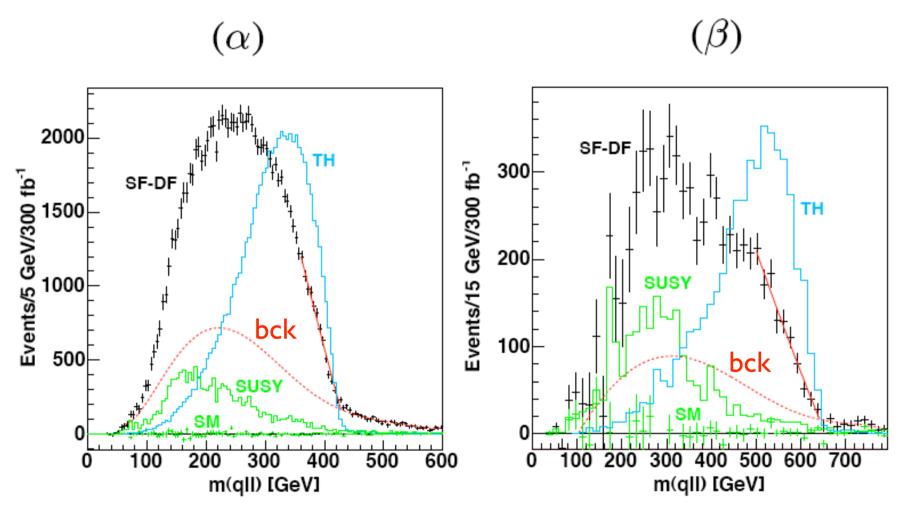
Aim: determine/study expected accuracy











background estimated from mixed events

Fit results (endpoints) 300 fb^{-1}

	Nominal	Fit	Energy Scale	Statistical	Syst. Fit
Edge	Value	Value	Error (σ^{scale})	Error (σ^{stat})	Error
	$[\mathrm{GeV}]$	[GeV]	[GeV]	$[\mathrm{GeV}]$	[GeV]
(α)					
$m_{ll}^{\rm max}$	77.07	76.72	0.08	0.04	0.1
$m_{qll}^{\rm max}$	425.9	427.7	2.1	0.9	0.5
$m_{ql(\text{low})}^{\text{max}}$	298.5	300.7	1.5	0.9	0.5
$m_{ql(\mathrm{high})}^{\mathrm{max}}$	375.8	374.0	1.9	1.0	0.5
$m_{qll(\theta > \frac{\pi}{2})}^{\min}$	200.7	-	1.0	2.2	2.0
$m_{bll(\theta > \frac{\pi}{2})}^{\min}$	183.1	-	0.9	4.5	4.0
(β)					
$m_{ll}^{\rm max}$	137.9	137.4	0.14	0.5	0.1
$m_{qll}^{\rm max}$	649.1	647.0	3.2	5.0	3.0
$m_{ql(\text{low})}^{\text{max}}$	436.6	443.0	2.2	6.3	4.0
$m_{ql(\mathrm{high})}^{\mathrm{max}}$	529.9	520.5	2.6	5.5	3.0
$m_{qll(\theta > \frac{\pi}{2})}^{\min}$	325.7	-	1.6	13.0	10.0

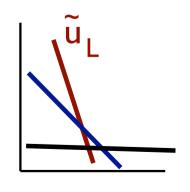
Multiple squark masses:

SPS	la	(_N)
JF J	Ia	(W)

SPS Ia (β)

\tilde{b}_1	\tilde{b}_2	≀ u∟	\tilde{d}_L	
491.9	524.6	537.2	543.0	
759.4	800.2	826.3	830.1	

two endpoints



Higher mass: higher endpoint but lower rate - background - blurring of endpoint

Extraction of masses

- simulate 10,000 ATLAS 'experiments'
- focus on statistical uncertainty
- each endpoint: gaussian distribution
- invert endpoint formulas, fit masses
- what is chance of finding correct minimum?

Following Allanach et al, each endpt E_i^{exp} taken as:

$$E_i^{\text{exp}} = E_i^{\text{nom}} + A_i \sigma_i^{\text{stat}} + B \sigma_i^{\text{scale}}$$

A, B picked from gaussian distribution, mean 0, width 1 One A for each endpoint, one B for m_{ll} , other B for endpoints involving jets

Minimize:

$$\Sigma = [\mathbf{E}^{\text{exp}} - \mathbf{E}^{\text{th}}(\mathbf{m})]^T \mathbf{W} [\mathbf{E}^{\text{exp}} - \mathbf{E}^{\text{th}}(\mathbf{m})]$$

determine masses

W inverse error/correlation matrix

SPS Ia (α) $\Delta \Sigma \leq 1$

nominal correct fit

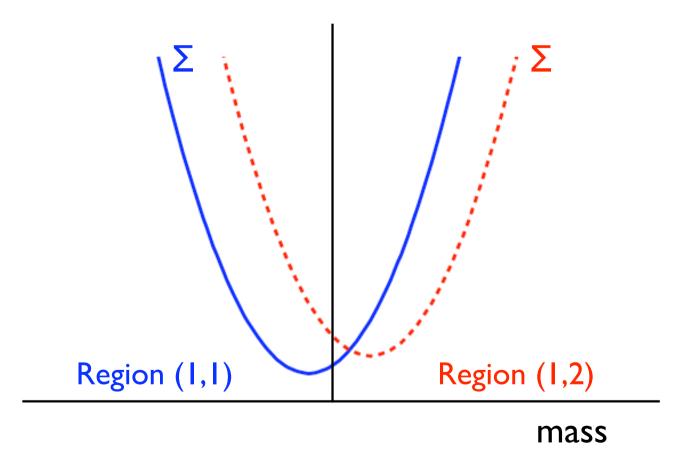
false fit

			(1,1)			(1,2)	
	Nom	$\langle m \rangle$	σ	γ_1	$\langle m \rangle$	σ	γ_1
$m_{ ilde{\chi}^0_1}$	96.1	96.3	3.8	0.2	85.3	3.4	0.1
$m_{ ilde{l}_R}$	143.0	143.2	3.8	0.2	130.4	3.7	0.1
$m_{ ilde{\chi}^0_2}$	176.8	177.0	3.7	0.2	165.5	3.4	0.1
$m_{ ilde{q}_L}$	537.2	537.5	6.1	0.1	523.2	5.1	0.1
$m_{ ilde{b}_1}$	491.9	492.4	13.4	0.0	469.6	13.3	0.1
$m_{\tilde{l}_R} - m_{\tilde{\chi}_1^0}$	46.9	46.9	0.3	0.0	45.1	0.7	-0.2
$m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}$	80.8	80.8	0.2	0.0	80.2	0.3	-0.1
$m_{\tilde{q}_L} - m_{\tilde{\chi}_1^0}$	441.2	441.3	3.1	0.0	438.0	2.7	0.0
$m_{\tilde{b}_1} - m_{\tilde{\chi}_1^0}$	395.9	396.2	12.0	0.0	384.4	12.0	0.1

Note: Three lightest masses are very correlated

Problem due to compositeness of formulas:

If masses are close to border of 'region', may find a similar-quality or better minimum in 'other' region



How likely is a false minimum? Depends on cut $\Delta\Sigma$ (level of confidence)

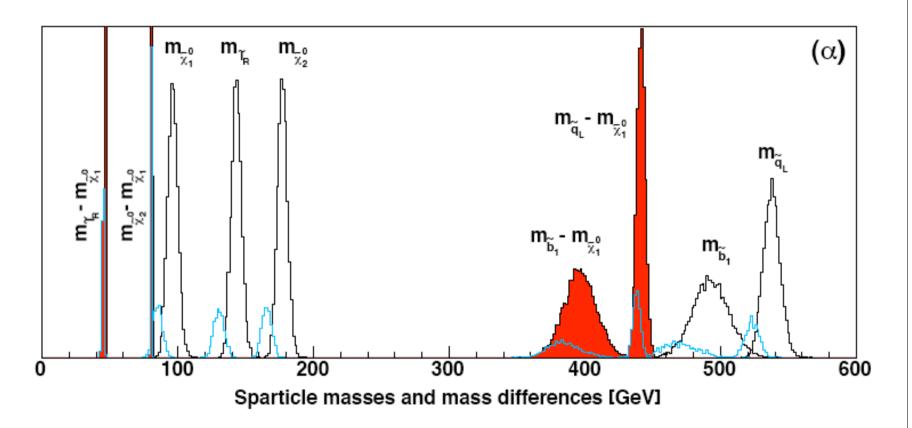
SPS Ia (α)

	# Minima	(1,1)	(1,2)
$\Delta \Sigma \leq 0$	1.00	90%	10%
$\Delta \Sigma \leq 1$	1.12	94%	17%
$\Delta \Sigma \leq 3$	1.30	97%	33%
$\Delta\Sigma \leq \infty$	1.88	99%	88%

Example: $\Delta \Sigma \leq 3$

30% chance of finding two minima

Spread

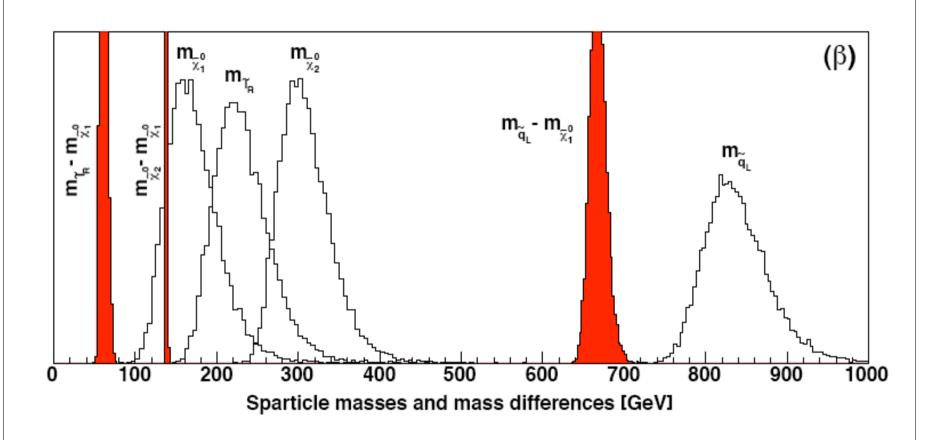


black: correct solution

red: mass differences

blue-green: false solution (area prop to probability)

Spread



false solutions not shown

LC input ("fixing" LSP mass)

SPS Ia (α)

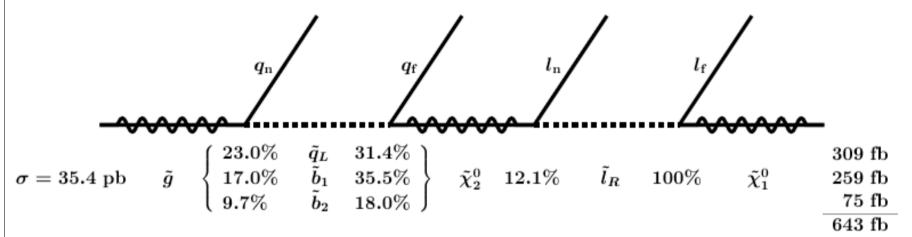
		(1,	1)
	Nom	$\langle m \rangle$	σ
$ ilde{\chi}_1^0$	96.05	96.05	0.05
\tilde{l}_R	142.97	142.97	0.29
$ ilde{\chi}^0_2$	176.82	176.82	0.17
$ ilde{q}_L$	537.25	537.2	2.5
$ ilde{b}_1$	491.92	492.1	11.7

Masses in GeV

SPS Ia (β)

		1 solution		2 solutions			
		(1,2)/(1,3)/B		(1,2)		(1,3)	
	Nom	$\langle m \rangle$	σ	$\langle m \rangle$	σ	$\langle m \rangle$	σ
$ ilde{\chi}_1^0$	161.02	161.02	0.05	161.02	0.05	161.02	0.05
\tilde{l}_R	221.86	221.15	3.26	222.22	1.32	217.48	1.01
$ ilde{\chi}_2^0$	299.05	299.15	0.57	299.11	0.53	299.05	0.52
$ ilde{q}_L$	826.29	826.1	6.3	825.9	5.8	828.6	5.5

Gluino cascade chain



SPS Ia numbers

Several new kinematical edges involving q_n

Only one new mass, need (minimum) only one more edge

Summary (SPS 1a)

- SPS Ia SUSY masses can be determined with precision 4-10 GeV
- Non-zero probability of fitting wrong minimum
- LC input on LSP mass removes ambiguity and increases precision significantly
- Gluino mass can be obtained using two b jets
- Better understanding of backgrounds very beneficial
- Understand better systematics of fitting (detector & theory)