Three-pion correlations in relativistic heavy-ion collisions:
a test for q,p -Bose gas model
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® System of g-deformed oscillators of the AC (Arik-Coon) type: (#27¢)
aial — g’ala; = &;; @i, a;] = [a},al] =0 (1)

Wiy a] = —6i5a;  [Nial] = daf  [N,Nj]=0.
Here —1 < g < 1. Due to d;;, different modes are independent.

Vacuum state is defined by @; |0,0,...) = 0 forall ¢; basis state
vectors |7, . . . y T4y . - .) are constructed as usual, and MEs are e.g.,

oon,ni,tvu} = 1,J|_‘I!.£+1J

where the "basic numbers” |7] = (1 — ¢")/(1 — q) are used. For
an operator A, the g-bracket | A| means formal series. As the g-
parameter ¢ — 1, the [ ] resp. [A] goes back to = resp. A.

For —1 < g < 1 the operators a.:-[, a; are conjugate to each other.
Note that ala; depends on the number operator N nonlinearly :

ala; = |V, (2)

and only at ¢ = 1 the familiar equality a,t

(...,ﬂni'i"]_,.ulﬂ-l

a; = N; is recovered.

¢ g-Deformed oscillators of the BM (Biedenharn-Macfarlane) type. #989)
b;bl — g%iblb; = b;;47™ [bs, b5] = bl bl =0 (3)
[N;y; N;] =0 [N, bj] = —6:;b; [N;, bj] = &;;bl.

The (g-)deformed Fock space is constructed likewise, but now, instead
of basic numbers, we use another g-bracket (and " g-numbers”):

e

bIbi = [Nilq [r]lq = —q—:—(—}-: . (4)

The equality blb; = NN; is recovered only if ¢ = 1 ("no-deformation”).
For consistency of conjugation, put

g=exp(if) , 0<O<m. 5
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® (System of independent) generalized gp-deformed osci]]aﬁors:(ﬁﬁ_. ig.f,) ﬁj{;

AAt — gATA =pV AAT—pAtA=4gN  (6)
[N(qp),A] = A [N(@),A“] a AT

where only one mode is shown. For gp-deformed oscillators we have
g% — pX

ATA = [N(QP)]]qp - EX‘.HQP = —-'q—_—p— 5 (?)

At p=1 the AC-type g-bosons are recovered, while putting p= g !

recovers the BM-cage.

Statistical g-deformed distributions

For the dynamical multi-particle (multi-pion, multi-kaon, ...) system,
we adopt the model of ideal gas of g- or gp-bosons. The Hamiltonian

H =Y wN; w; = (m?2 + k? (8)

issuch that A is one of the above three versions of the number oper-
ator: the subscript /4’ labels different modes. This choice is the unique
truly non-interacting one, with an additive spectrum. We assume the
3-momenta of particles take discrete values (i.e., the system is con-
tained in a large finite box of volume ~ L?).

To descr‘ibe statistical properties, we evaluate thermal averages

_ Sp(Ap)
OQ_SMM

where 8 = 1/T, the Boltzmann constant is set equal to 1.

Calculating, say, for AC-type g-bosons the thermal average (@)
with the chosen Hamiltonian, we obtain :
eBoi _ 1 Al err & Srandon(

(@) = e Vokos & Zackos (9

BH

p=e"
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The distribution function (for —1 < g < 1) is found to be
1

: j I, R S,
AC: (alai) = o 9)
If g — 1, this is the usual Bose-Einstein distribution. At ¢ = —1 or
g = 0, the distribution function yields formally Fermi-Dirac or clas-
sical Boltzmann cases. Clearly, the defining relations (1) at ¢ = —1

differ from those for the system of genuine fermions. The difference with
fermions lies in the commuting (VS anticommuting !) non-coinciding
modes at g = —1.

For BM-type of g-bosons, the Hamiltonian is taken similarly, with
the relevant number operator: H = ©; w; N;.

Calculate (g*™i) to get (g*Ni) = (eP*i — 1)/(e®%i — g*1).
With the formula (bib;) = (ef“i — ¢)~1(g~™i) the g-distribution
function (with ¢ + ¢~ = [2], = 2 cos 6) is then found:

ePwi — 1

. bib;) = .
BM ( % ) e2ﬁwi — 2cos B eﬁwi <+ 1

This g-distribution function is real, for real or complex parameter g.
The g-distribution f(k) = (b'b)(k) in (10) is suth that at ¢ # 1
the distribution function lies in between the other two curves, Bose-
Einstein one and the classical Boltzmann one. The same is true of the
g-distribution function (9) of the AC-type g-bosons.

(10)

Generalized (gp-deformed) one-particle distribution function for
gp-bosons in momentum space is of the form Da(;m/ b4 Kbl
& A
(74 — 1) .
gp-bos:  (AfA;) = ; (11)
(7 — p)(eP —q)
It contains the above g-distributions (9) resp. (10) as particular cases:
atp=1resp. p=gq~'.




n-Particle correlations of gp-bosons

Let us give most general results [.*fa’ams?a 2 A6 | for the g,p-Bose
gas model (based on gp-oscillators). With the Hamiltonian

H =3 w; N® (12)

the n-particle distribution functions have been derived as

[n]gp! (€7 — 1)

T\ry 4 AP\ — ~ (13
<(A£) (Al) > - n?=o(eﬂw.,; o qrpnwr) I‘L}
[mley="——"—, [mls! = [pl2le: - In-Tlpkml-

From (13), we get the general result for the n-th order gp-deformed

—n)'( 4’ omitted):

(A'f

Bw __ Bw __ n
,\{n) — ﬂ:n]lqp (e p) (e Q)

which constitutes our main rgguli., being generalization to the n-th or-

der of correlations, and to the two-parameter (gp-) deformation.

extension of the intercept A(“)

—~1 (14)

Consider the asymptotics Bw — oo (large momenta or, at fixed
momentum, low temperature) of the intercepts )\g’:g:

q.p

(n), asympt __ §ucs n=L., k rol—ry (15
A ——1+[[n]|qp.——1+klll(ﬁqu ). (15)
== ==

For each case (AC-type g-bosons, BM-type, the gp-generalizaticn)
the asymptotics of n-th order intercept is given by the corresponding
extension of the usual n-factorial (the latter vields the intercep of pure
Bose-Einstein n-particle correlator).

If n = 2 (then, [2]4p = p + q) this specializes to the formula
(p+g) (™ —1)
(P — g?)(ePws — pg)(efei — p?)

6

((AD)?(4)%) =



In particular, for AC type g-bosons, the n-particle distribution func-

tion I.J'
al)™(a;)") = el
(( z) ( i)) TII-‘_-1(6&“;“_[1)
=g 2 m—1
m]=—F——=1+¢+¢+..+q

g .
yields the desired formula for the intercept A(™® = 5‘(‘—1\?1 — 1 of
n-particle correlations (’z’ dropped):

[n]! (e — g)"*

H;'ﬁ:z(eﬁw iz q‘.l") :
Asymptotically, at Bw — oo the result gets dependent solely on the
g-parameter:

k
ME=E = 14 |njt= -1+ T (£ ¢)

k=1 "r=0

AR =—1+ (16)

=(1+e(l+g+¢)---(QL+g+...+¢")—-1. @)
This remarkable fact can serve as the test one when confronting the
developed approach with the numerical data for pions and kaons ex-
tracted from the experiments on relativistic heavy ion collisions.

Two- and three-pion correlations of g-bosons

Two-particle correlations of the AC-type g-bosons. From the above,
we have the (monomode) formula

1+q
(ePwi — q)(ePwi — g2)

(alala;a;) =

‘1 a; uzaa}

from which the ”intercept” )\(2) = —L#T}?— 1 follows:

(L+g)e®™—q) eP°—1

oy AR
AAC = T B — g2 _,._?eﬁw — g2 > (18)
A{@;G&g‘; 7
g T f

e



Threg-particle correlations of the AC-type q-bosons.
The 3-particle monomode distribution function

e 1+q)(1+qg+4d%)
a;a;a;) = (ePwi — q)(ePwi — g?)(ePwi — g®)

(a]a]a]

leads to the formula for the intercept, or "strength”, Ats) of 3-particle
correlation function ("4’ dropped):

3 _ (a*a®) (1+q)(1+q+3g°)(e* —g)*
AAC — - 1= — 1.
° ™ (atay? (e = @) (™ — @)
%), Q3G up. 2 (19)
e = g(q%29+42). |
Two-particle correlations of the BM-type g-bosons.
The 2-particle distribution for BM-type g-bosons is

2cosf
e239i — 2 cos(26)eB*i + 1
From this, we get the intercept of 2-particle correlation function:
(bIb:[b,-bg} __ 2cos 0(t; + 1 — cos 8)? I (20)
(blb:))2 2 +2(1 — cos?O)t; )

(bIbibib;) =

A= -

where ¢; = cosh(Bw;) — 1, and again it is a real function.

Three-particle correlations of the BM-type g-bosons.

Finally, we specialize the obtained general result to gain the formulas
for n = 3 case of BM type g-bosons:

[2],[3]4 (€% — 2% cosf + 1)?
(B — 1)2(e26w — 2eP¥ cos(360) + 1)

A = -1+

(21)

AQ) 2YmP: _ _1 1 [2] 13, = —1+2cos 6 (4cos® 6—1). (22)
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Comparison with experimental data

To confront the obtained results with the existing data for 3-particle
correlations of pions or kaons produced and registered in the experi-
ments on relativistic heavy ion collisions, usually the following combi-
nation is taken [Ke/nz 2 Zhang- 97;

73 (py, pa, p3) =

C®)(py, p2, p3) —C? (p1, p2) — C (p3, p3) —C@ (p3, p1)+2
2/(C® (p1,p2) —1) (CP(p2, p3) — 1) (C@ (p3, 1) —1)
as well as the characteristic quantity formed from intercepts (set p; =
p2 =p3 = K)

1 A8(K) — 3A3(K)
2 (A@K)M

ro(K) = r®(K,K,K) = »  (23)

where
AO(K) =COK, K, K)-1, AI(K)=CO(K, K)-1,
eifler of A~ 07“5;{/*2? e, or gp-defermed versicn.
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