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CMS models

More than thirty five years after the famous paper of

Francesco Calogero
Solution of the one-dimensional n-body problem with quadratic
and/or inversely quadratic pair potentials
Journal of Mathematical Physics 12 (1971) 419-436

Bill Sutherland
Physical Review A 1971, 1972

Jürgen Moser
Adv. Math. 1975
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CMS models

The Calogero-Sutherland-Moser type system which con-
sists of n-particles on a line interacting with pairwise po-
tential V (x) admits the following spin generalization

HECM =
1

2

n∑
a=1

p2
a +

1

2

n∑
a6=b

fabfba V (xa − xb)
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CMS models
The Euler-Calogero-Sutherland-Moser type systems are
integrable in the following cases

I. V(z) = z−2 Calogero

II. V(z) = a2 sinh−2 az

III. V(z) = a2 sin−2 az Sutherland

IV. V(z) = a2℘(az)

V. V(z) = z−2 + ωz2 Calogero

The nonvanishing Poisson bracket relations

{xi, pj} = δij , {fab, fcd} = δbcfad − δadfcb
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Dynamics on Lie groups

Let G be a real Lie group and A(G) be its Lie algebra. The
action of the Lie group G in its group manifold is given by
the following diffeomorphisms

Lg : G −→ G Lgh = gh

Rg : G −→ G Rgh = hg h, g ∈ G

The adjoint and coadjoint actions are

Adg : A(G) −→ A(G) Adgh = AdgAdh
Ad∗g : A(G) −→ A(G) Ad∗gh = Ad∗hAd

∗
g
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Dynamics on Lie groups

The Lie-Poisson brackets are

{F,H} =< x, [∇F (x),∇H(x)] > ,

{F,H} = Ck
ijxk

∂F

∂xi

∂H

∂xj
, x ∈ A∗(G)

The left and right invariant 1-forms obey the First structure
Cartan equation

dωL + ωL ∧ ωL = 0 ,

dωR − ωR ∧ ωR = 0
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Dynamics on Lie groups

The geodesic flow on the matrix Lie group G is described
by the map

t 7−→ g(t) ∈ G
and by the Lagrangian

L =
1

2
< ω, ω >, ω ∈ A(G)

In local coordinates we have

L =
1

2
GµνX

µXν
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Dynamics on Lie groups

The phase space is the cotangent bundle T ∗(G) with
canonical symplectic structure

Ω = d(PµdX
µ)

{Xµ, Xν} = 0 , {Pµ, Pν} = 0 , {Xµ, Pν} = δµν

and Hamiltonian

H =
1

2
GµνPµPν



	 ´ J 9/95 I ¹ �

	 	

Dynamics on Lie groups

Let us define the functions

ξL,Rµ = ΩL,R ν
µPν

such that
ξRµ = Adνµξ

L
ν

with Poisson bracket relations

{ξRα , ξRβ } = −Cγ
αβξ

R
γ ,

{ξLα , ξLβ } = Cγ
αβξ

R
γ ,

{ξRα , ξRβ } = 0
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Geodesic flow on GL(n,R) group manifold

Let us consider the Lagrangian

L =
1

2
< ω, ω >, ω ∈ gl(n,R)

which is defined by the following one parameter family of
non-singular metrics on GL(n,R) group manifold

< X , Y >= TrXY − α

αn− 2
TrX TrY ,

where X, Y ∈ gl(n,R) and α ∈ [0, 1]
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Geodesic flow on GL(n,R)
Thus we have

L =
1

2
tr
(
g−1ġ

)2
− α

2(αn− 2)
tr2

(
g−1ġ

)
=

=
1

2
G−1
ab,cd ġab ġcd

Here g ∈ GL(n,R) and

Gab,cd = gad gcb −
α

2
gab gcd ,

G−1
ab,cd = g−1

da g
−1
bc −

α

αn− 2
g−1
ba g

−1
dc
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Geodesic flow on GL(n,R)
The invariance of the Lagrangian under the left and right
translations leads to the possibility of explicit integration
of the dynamical equations

d

dt

(
g−1ġ

)
= 0⇒ g(t) = g(0) exp (tJ)

The canonical Hamiltonian corresponding to the bi-invariant
Lagrangian L is

H =
1

2
tr
(
πTg

)2
− α

4
tr2

(
πTg

)
=

1

2
Gab,cd πab πcd
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Geodesic flow on GL(n,R)
The nonvanishing Poisson brackets between the fundamen-
tal phase space variables are

{gab , πcd} = δab δcd

At first we would like to analyze the following symmetry
action on SO(n,R) in GL(n,R)

g 7→ g′ = Rg

It is convenient to use the polar decomposition for an arbi-
trary element of GL(n,R)

g = OS
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Geodesic flow on GL(n,R)

The orthogonal matrix O(φ) is parameterized by the Euler
angles (φ1, · · · , φn(n−1)

2

) and S is a positive definite symmetric

matrix

We can treat the polar decomposition as 1− 1 transforma-
tion from n2 variables g to a new set of Lagrangian variables:

g 7−→ (Sab , φa) ,

the n(n−1)
2

Euler angles and n(n+1)
2

symmetric matrix variables
Sab
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Geodesic flow on GL(n,R)
In terms of these new variables the Lagrangian can be
rewritten as

LGL =
1

2
tr
(
ΘL + Ṡ S−1

)2

The polar decomposition induces a canonical transforma-
tion

(g, π) 7−→ (Sab, Pab;φa, Pa)

The canonical pairs obey the Poisson bracket relations

{Sab , Pcd} =
1

2
(δacδbd + δadδbc) , {φa , Pb} = δab
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Geodesic flow on GL(n,R)
In the case of GL(3,R) the orthogonal matrix is given by
O(φ1, φ2, φ3) = eφ1J3 eφ2J1 eφ3J3 ∈ SO(3,R). The canonical trans-
formation is given by

(g, π) 7−→ (Sab, Pab;φa, Pa) ,

where

π = O (P − kaJa) ,
ka = γ−1

ab

(
ηLb − εbmn (SP )mn

)
and

γik = Sik − δik trS



	 ´ J 17/95 I ¹ �

	 	

Geodesic flow on GL(n,R)

Here ηLa are three left-invariant vector fields on SO(3,R)

ηL1 = −sinφ3

sinφ2

P1 − cosφ3 P2 + cotφ2 sinφ3 P3 ,

ηL2 = −cosφ3

sinφ2

P1 + sinφ3 P2 + cotφ2 cosφ3 P3 ,

ηL3 = −P3
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Geodesic flow on GL(n,R)

The right-invariant vector fields are

ηR1 = − sinφ1 cotφ2P1 + cosφ1 P2 +
sinφ1

sinφ2

P3 ,

ηR2 = cosφ1 cotφ2 P1 + sinφ1 P2 −
cosφ1

sinφ2

P3 ,

ηR3 = P1
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Geodesic flow on GL(n,R)

In terms of the new variables the canonical Hamiltonian
takes the form

H =
1

2
tr (PS)2 − α

4
tr2 (PS) +

1

2
tr (JaSJbS) kakb

The canonical variables (Sab , Pab) are invariant while (φa , Pa)
undergo changes
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Geodesic flow on GL(n,R)

The configuration space S of the real symmetric 3 × 3 ma-
trices can be endowed with the flat Riemannian metric

ds2 =< dQ , dQ >= Tr dQ2 ,

whose group of isometry is formed by orthogonal trans-
formations Q′ = RT QR. The system is invariant under the
orthogonal transformations S ′ = RT S R. The orbit space is
given as a quotient space S/SO(3,R) which is a stratified
manifold
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Geodesic flow on GL(n,R)

(1) Principal orbit-type stratum,
when all eigenvalues are unequal x1 < x2 < x3

with the smallest isotropy group Z2 ⊗ Z2

(2) Singular orbit-type strata
forming the boundaries of orbit space with
(a) two coinciding eigenvalues (e.g. x1 = x2) ,

when the isotropy group is SO(2)⊗ Z2

(b) all three eigenvalues are equal (x1 = x2 = x3) ,
here the isotropy group coincides with the isometry
group SO(3,R)
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Geodesic flow on GL(n,R)

Hamiltonian on the Principal orbit

To write down the Hamiltonian describing the motion on
the principal orbit stratum we use the main-axes decompo-
sition in the form

S = RT (χ)e2XR(χ) ,

where R(χ) ∈ SO(3,R) is parametrized by three Euler angles
χ = (χ1, χ2, χ3) and e2X is a diagonal e2X = diag ‖e2x1 , e2x2 , e2x3‖
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Geodesic flow on GL(n,R)

The original physical momenta Pab are expressed in terms
of the new canonical pairs

(Sab, Pab) 7−→ (xa, pa;χa, Pχa) ,

where

P = RT e−X
(

3∑
a=1

P̄aᾱa +
3∑

a=1

Paαa
)
e−XR
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Geodesic flow on GL(n,R)
with

P̄a =
1

2
pa ,

Pa = −1

4

ξRa
sinh(xb − xc)

, (cyclic a 6= b 6= c)

In the representation we introduce the orthogonal basis for
the symmetric 3×3 matrices αA = (αi, αi), i = 1, 2, 3 with the
scalar product

tr(ᾱa ᾱb) = δab , tr(αa αb) = 2δab , tr(ᾱa αb) = 0
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Geodesic flow on GL(n,R)

In this case the SO(3,R) right-invariant Killing vector fields
are

ξR1 = −pχ1 ,

ξR2 = sinχ1 cotχ2 pχ1 − cosχ1 pχ2 −
sinχ1

sinχ2

pχ3 ,

ξR3 = − cosχ1 cotχ2 pχ1 − sinχ1 pχ2 +
cosχ1

sinχ2

pχ3
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Geodesic flow on GL(n,R)
After passing to these main-axes variables the canonical
Hamiltonian reads

H =
1

8

3∑
a=1

p2
a −

α

16

(
3∑

a=1

pa

)2

+
1

16

∑
(abc)

(ξRa )2

sinh2(xb − xc)
− 1

4

∑
(abc)

(
Rabη

L
b + 1

2
ξRa
)2

cosh2(xb − xc)

The integrable dynamical system describing the free motion
on principal orbits represents the
Generalized Euler-Calogero-Moser-Sutherland model
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Geodesic flow on GL(n,R)

Reduction to Pseudo-Euclidean
Euler-Calogero-Moser model

We demonstrate how IIA2 Euler-Calogero-Moser-Sutherland
type model arises from the Hamiltonian after projection
onto a certain invariant submanifold determined by dis-
crete symmetries. Let us impose the condition of symmetry
of the matrices g ∈ GL(n,R)

ψ(1)
a = εabcgbc = 0
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Geodesic flow on GL(n,R)

One can check that the invariant submanifold of T ∗(GL(n,R))
is defined by

ΨA = (ψ(1)
a , ψ(2)

a )

and the dynamics of the corresponding induced system is
governed by the reduced Hamiltonian

H|ΨA=0 =
1

2
tr (PS)2 − α

4
tr2 (PS)
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Geodesic flow on GL(n,R)

The matrices S and P are now symmetric and nondegener-
ate.

It can be shown that

HPECM =
3∑

a=1

p2
a −

α

2
(p1 + p2 + p3)2 +

1

2

∑
(abc)

(ξRa )2

sinh2(xb − xc)

which is a Pseudo-Euclidean version of the Euler-Calogero-
Moser-Sutherland model.
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Geodesic flow on GL(n,R)
After the projection the Poisson structure is changed ac-
cording to the Dirac prescription

{F,G}D = {F,G}PB − {F, ψA}C−1
AB{ψB, G}

To verify this statement it is necessary to note that the
Poisson matrix CAB = ‖{ψ(1)

a , ψ
(2)
b }‖ is not degenerate. The

resulting fundamental Dirac brackets between the main-
axes variables are

{xa, pb}D =
1

2
δab , {χa, pχb}D =

1

2
δab
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Geodesic flow on GL(n,R)
The Dirac bracket algebra for the right-invariant vector
fields on SO(3,R) reduces to

{ξRa , ξRb }D =
1

2
εabc ξ

R
c .

All angular variables are gathered in the Hamiltonian in
three left-invariant vector fields ηLa . The corresponding right-
invariant fields ηRa = Oab η

L
b are the integrals of motion

{ηRa , HPECM} = 0
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Geodesic flow on GL(n,R)
Thus the surface on the phase space, determined by the
constraints

ηRa = 0

defines the invariant submanifold. Using the relation be-
tween left and right-invariant Killing fields ηRa = Oab η

L
b we

find out that after projection to the constraint surface the
Hamiltonian reduces to

4HPECM =
3∑
a

p2
a −

α

2
(p1 + p2 + p3)2 +

∑
(abc)

(ξRa )2

sinh2 2(xb − xc)



	 ´ J 33/95 I ¹ �

	 	

Geodesic flow on GL(n,R)

Apart from the integrals ηR the system possesses other inte-
grals. The integrals of motion corresponding to the geodesic
motion with respect to the bi-invariant metric on GL(n,R)
group are

Jab = (πTg)ab

The algebra of this integrals realizes on the symplectic level
the GL(n,R) algebra

{Jab, Jcd} = δbcJad − δadJcb
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Geodesic flow on GL(n,R)
After transformation to the scalar and rotational variables
the expressions for the current J reads

J =
1

2

3∑
a=1

RT (pa ᾱa − ia αa − jaJa)R ,

where

ia =
∑
(abc)

1

2
ξRa coth(xb − xc) +

(
Ram η

L
m +

1

2
ξRa

)
tanh(xb − xc)

and
ja = Ram η

L
m + ξRa
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Geodesic flow on GL(n,R)

After performing the reduction to the surface defined by
the vanishing integrals

ja = 0

we again arrive at the same Pseudo-Euclidean version of
Euler-Calogero-Moser-Sutherland system.
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Geodesic flow on GL(n,R)

Lax representation for the Pseudo-Euclidean
Euler-Calogero-Moser model

The Hamiltonian equations of motion can be written in a
Lax form

L̇ = [A,L] ,

where the 3× 3 matrices are given explicitly as
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Geodesic flow on GL(n,R)

L =


p1 − α

2 (p1 + p2 + p3) L+
3 , L−2

L−3 , p2 − α
2 (p1 + p2 + p3) L+

1

L+
2 , L−1 , p3 − α

2 (p1 + p2 + p3)



A =
1

4


0 −A3, A2

A3, 0, −A1

−A2, A1, 0
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Geodesic flow on GL(n,R)

Entries Aa and L±a are given as

L±a = −1

2
ξRa coth(xb − xc)−

(
Ram η

L
m +

1

2
ξRa

)
tanh(xb − xc)

±
(
Ram η

L
m + ξRa

)
,

Aa =
1

2

ξRa
sinh2(xb − xc)

−
Ram η

L
m + 1

2
ξRa

cosh2(xb − xc)
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Geodesic flow on GL(n,R)

Singular orbits. The case of GL(3,R) and GL(4,R)

The motion on the Singular orbit is modified due to the
continuous isotropy group. This symmetry of dynamical
system is encoded in constraints on phase space variables

ψ1 =
1√
2

(x2 − x3) , ψ2 =
1√
2

(p2 − p3) ,

ψ3 = ξR2 − ξR3 , ψ4 = ξR1
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Geodesic flow on GL(n,R)

One can check that this surface represents the invariant
submanifold. These constraints are the second class in the
Dirac terminology hence we have to replace the Poisson
brackets by the Dirac ones

{x1, p1}D = 1 , {xi, pj}D =
1

2
, i, j = 2, 3 ,

{ξRa , ξRb }D = 0 , a, b = 1, 2, 3
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Geodesic flow on GL(n,R)

As a result we obtain

H
(2)
GL(3,R) =

1

2
p2

1 +
1

4
p2

2 +
g2

sinh2(x1 − x2)

This is an integrable mass deformation of the
IIA1 Calogero-Moser-Sutherland model.

The Lax pair for system can be obtained from the L and
A matrices letting ηR = 0 and projecting on the constraint
shell
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Geodesic flow on GL(n,R)

L
(2)
GL(3,R) =


1
2
p1, −ξR2 L+, −ξR2 L+

ξR2 L
−, 1

2
p2 0

ξR2 L
−, 0, 1

2
p2



A
(2)
GL(3,R) =

ξR2
sinh2(x1 − x2)


0 −1, 1

1, 0, 0

−1, 0, 0
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Geodesic flow on GL(n,R)

Here

L− := (1− coth(x1 − x2)) ,

L+ := (1 + coth(x1 − x2))
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Geodesic flow on GL(n,R)
Consider the case of GL(4,R) group restricted on the Sin-
gular orbit with equal eigenvalues x3 = x4. The invariant
submanifold is fixed by the five constraints

ψ1 :=
1√
2

(x3 − x4) ,

ψ2 :=
1√
2

(p3 − p4) ,

ψ3 := lR34 ,

ψ4 := lR13 − lR14 ,

ψ5 := lR23 − lR24
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Geodesic flow on GL(n,R)

The Poisson matrix ‖{ψm, ψn}‖ ,m, n = 1, . . . , 5 is degenerate
with rank‖{ψm, ψn}‖ = 4. To find out the proper gauge and
simplify the constraints it is useful to pass

lRab = yaπb − ybπa , {ya, πb} = δab , a, b = 1, . . . , 4

and choose the following gauge-fixing condition

ψ :=
1√
2

(y3 − y4) = 0
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Geodesic flow on GL(n,R)

Finally the reduced phase space corresponding to the Sin-
gular orbit is defined by the set of four second class con-
straints {ψ,Π, ψ,Π}

ψ :=
1√
2

(x3 − x4) = 0 , Π :=
1√
2

(p3 − p4) = 0 ,

ψ :=
1√
2

(y3 − y4) = 0 , Π :=
1√
2

(π3 − π4) = 0 ,
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Geodesic flow on GL(n,R)

This set of constraints form an invariant submanifold of the
phase space under the action of the discrete permutation
group S2 xi

pi

 7→
xS(i)

pS(i)

 ,

 yi
πi

 7→
 yS(i)

πS(i)

 ,

where i = 3, 4.
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Geodesic flow on GL(n,R)

These constraints form the canonical set of second class
constraints with non-vanishing Poisson brackets

{ψ,Π} = 1 , {ψ̄,Π} = 1

and thus the fundamental Dirac brackets for canonical vari-
ables are

{xi, pj}D =
1

2
, {yi, πj}D =

1

2
, i, j = 1, 2
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Geodesic flow on GL(n,R)
The system reduces to the following one

H
(3)
GL(4,R) =

1

2
p2

1 +
1

2
p2

2 +
1

4
p2

3

+
(lR12)2

16 sinh2(x1 − x2)
+

(lR13)2

8 sinh2(x1 − x3)
+

(lR23)2

8 sinh2(x2 − x3)

with the Poisson bracket algebra

{xr , ps} = δrs ,

{lRpq , lRrs} = δpsl
R
qr − δprlRqs + δqsl

R
pr − δqrlRps , p, q, r, s = 1, 2, 3
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Geodesic flow on GL(n,R)

In this case L and A matrices are the well-known matrices
for the spin Calogero-Sutherland model

Lij =
1

2
piδij − (1− δij)lRijΦ(xi − xj) ,

Aij = −(1− δij)lRijV (xi − xj) ,

where

Φ(x) = coth(x) + 1 , V (x) =
1

2 sinh2(x)
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Geodesic flow on GL(n,R)
After projection to the invariant submanifold correspond-
ing to the motion on the Singular orbits we arrive at the
Lax matrices

L
(3)
GL(4,R) =



1
2
p1, −lR12Φ12, −lR13Φ13, −lR13Φ13

−lR12Φ12,
1
2
p2, −lR23Φ23, −lR23Φ23

−lR13Φ13, −lR23Φ23,
1
2
p3, 0

−lR13Φ13, −lR23Φ23, 0, 1
2
p3
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Geodesic flow on GL(n,R)

A
(3)
GL(4,R) =



0, lR12V12, lR13V13, l
R
13V13

−lR12V12 0, lR23V23, l
R
23V23

−lR13V13, −lR23V23, 0, 0

−lR13V13, −lR23V23, 0, 0
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Geodesic flow on gl(n,R)

Consider the Lagrangian represented by the left-invariant
metric

L =
1

2
< Ȧ , Ȧ >, A ∈ GL(n,R)

which is defined on gl(n,R) algebra

< X , Y >= TrXT Y , X, Y ∈ gl(n,R)
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Geodesic flow on gl(n,R)

The obviously conserved angular momentum

µ = [A , Ȧ]

leads to the possibility to integrate the equations of motion
Ä = 0 in the form A = at+ b. The canonical Hamiltonian cor-
responding to L is

H =
1

2
tr
(
P TP

)2
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Geodesic flow on gl(n,R)
The nonvanishing Poisson brackets between the fundamen-
tal phase space variables are

{Aab , Pcd} = δab δcd

Using the same machinery as in the previous case we obtain
the Hamiltonian

H =
1

2

3∑
a=1

p2
a +

1

4

∑
(abc)

(ξRa )2

(xb − xc)2
+
∑
(abc)

(
Rabη

L
b + 1

2
ξRa
)2

(xb − xc)2
,

which is a generalization of the
rational Euler-Calogero-Moser-Sutherland model
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Geodesic flow on gl(n,R)

After reduction on the invariant submanifold defined by the
equations ηR = 0 we obtain the Hamiltonian

H =
1

2

3∑
a=1

p2
a +

1

4

∑
(abc)

(ξRa )2

[
1

(xb − xc)2
+

1

(xb − xc)2

]

which coincides with the Hamiltonian of the
ID3 Euler-Calogero-Moser-Sutherland model
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Geodesic motion on GL(n,R)
Forty years after the famous papers of
M. Toda
Journal of Physical Society of Japan 20 (1967) 431
Journal of Physical Society of Japan 20 (1967) 2095

The Hamiltonian of the non-periodic Toda lattice is

HNPT =
1

2

n∑
a=1

p2
a + g2

n−1∑
a=1

exp [2(xa − xa+1)] ,

and the Poisson bracket relations are
{xi, pj} = δij .
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Geodesic motion on GL(n,R)
The equations of motion for the non-periodic Toda lattice
are

ẋa = pa, a = 1, 2, . . . , n ,

ṗa = −2 exp [2(xa − xa+1)] + 2 exp [2(xa−1 − xa)] ,
ṗ1 = −2 exp [2(x1 − x2)] ,

ṗn = −2 exp [2(xn−1 − xn)] ,

and for the periodic Toda lattice

ẋa = pa ,

ṗa = 2 exp [2(xa−1 − xa)]− exp [2(xa − xa+1)] .
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Geodesic motion on GL(n,R)

Further for simplicity we put kab = 0 and α = 0.

We use the Gauss decomposition for the positive-definite
symmetric matrix S

S = Z DZT .
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Geodesic motion on GL(n,R)

Here D = diag ‖x1, x2, . . . xn‖ is a diagonal matrix with posi-
tive elements and Z is an upper triangular matrix

Z =



1 z12 . . . z1n

0 1 . . . z2n

...
...

. . .
...

0 0 . . . 1


.
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Geodesic motion on GL(n,R)
The differential of the symmetric matrix S is given by

dS = Z
[
dD +DΩ + (DΩ)T

]
ZT ,

where Ω is a matrix-valued right-invariant 1-form defined
by

Ω := dZZ−1 .

In the Lie algebra gl(n,R) of n×n real matrices we introduce
Weyl basis with elements

(eab)ij = δai δbj ,
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Geodesic motion on GL(n,R)
which are n× n matrices in the form

eab =



...

. . . . . . . . . 1 . . .
...
...
...


.

The scalar product in gl(n,R) is defined by

(eab , ecd) = tr(eTab , ecd) = δac δbd .
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Geodesic motion on GL(n,R)

Let us introduce also the matrices

ᾱa =



0 . . . . . . . . . 0
...

. . .
...

... 1
...

...
. . .

...

0 . . . . . . . . . 0





	 ´ J 64/95 I ¹ �

	 	

Geodesic motion on GL(n,R)

and

αab =



...
...

. . . . . . . . . 1 . . .
...

...

. . . 1 . . .
... . . .

...
...


.
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Geodesic motion on GL(n,R)

with scalar product is defined by

(ᾱa , ᾱb) = tr(ᾱa ᾱb) = δab ,

(αab , αcd) = tr(αab αcd) = 2 (δad δbc + δac δbd) ,

(ᾱa , αbc) = tr(ᾱa αbc) = 0 .
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Geodesic motion on GL(n,R)

Now we can write the differential of the matrix S in the
form

dS = Z

 n∑
a=1

dxaᾱa +
n∑

a<b=1

xaΩab αab

ZT .

Here Ωab are the coefficients of the matrix Ω

Ω =
∑
a<b

Ωab eab .
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Geodesic motion on GL(n,R)

In the case of Gauss decomposition of the symmetric matrix
S = ZDZT the corresponding momenta we seek in the form

P = (ZT )−1

 n∑
a=1

P̄aᾱa +
n∑
a<b

Pab αab

Z−1 .
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Geodesic motion on GL(n,R)
From the condition of invariance of the symplectic 1-form

tr (PdS) =
n∑
i=1

pa dxa +
n∑

a<b=1

pab dzab ,

where the new canonical variables (xa , pa) , (zab , pab) obey
the Poisson bracket relations

{xa , pb} = δab , {zab , pcd} = δac δbd ,

we obtain

P̄a = pa , Pab =
lab
2xa

.
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Geodesic motion on GL(n,R)

Here lab are right-invariant vector fields on the group of
upper triangular matrices with unities on the diagonal

lab =
(
Ω−1

)T
ab,cd

pcd ,

where Ωab,cd are coefficients in the decompositions of the
1-forms Ωab in coordinate basis

Ωab = Ωab,cd dzcd ,
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Geodesic motion on GL(n,R)

The canonical Hamiltonian in the new variables takes the
form

H =
1

2

n∑
a=1

p2
a x

2
a +

1

4

n∑
a<b=1

l2ab
xa
xb
.
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Geodesic motion on GL(n,R)

After the canonical transformation

xa = eya , pa = πa e
−ya

we arrive to Hamiltonian in the form of
spin nonperiodic Toda chain

H =
1

2

n∑
a=1

π2
a +

1

4

n∑
a<b=1

l2ab e
ya−yb .
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Geodesic motion on GL(n,R)

The explicit form of the generators of the group of upper
triangular matrices is

l12 = p12 +
n∑
k=2

z2k p1k , l13 = p13 +
n∑
k=2

z2k p1k .

The internal variables satisfy the Poison bracket relations

{lab , lcd} = Cef
ab,cd lef (1)

with structure coefficients

Cef
ab,cd = δbc δae δdf . (2)
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1. Homogeneous cosmological models

1.1. Spacetime decomposition

Let (M, g) be a smooth four-dimensional paracompact and
Hausdorf manifold. In each point of the open set U ⊂M we
propose that are defined the local basis of 1-forms and its
dual basis

{ωµ, µ = 0, 1, 2, 3} {eν , ν = 0, 1, 2, 3}
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such that
[eα, eβ] = Cµ

αβeµ,

where Cµ
αβ are the basis structure functions. The symmetric

metric is

g = gµνω
µ ⊗ ων , g−1 = gµνeµ ⊗ eν

We suppose that on the manifold (M, g) is defined affine
connection ∇

Γµν = Γµναω
α ⇐⇒ Γµβα = 〈ωµ,∇eαeβ〉

In manifold with affine connection we can construct the
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bilinear antisymmetric mapping

T (X, Y ) = ∇X Y −∇Y X − [X , Y ]

The First Cartan structure equation is

dωµ + Γµα ∧ ωα =
1

2
T µ

The tensor type (1, 3) defined by

R(ω, Z, X, Y ) = 〈ω, R( X, Y )Z〉

is called the curvature tensor, where

R( X, Y ) = ∇X∇Y −∇Y∇X − [∇X ,∇Y ]
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If we define the curvature 2-form Ωµ
ν by

Ωµ
ν = dΓµν + Γµα ∧ Γαν

one can obtain the Second structure Cartan equation

Ωµ
ν =

1

2
Rµ

ναβ ω
α ∧ ωβ

In the Riemannian geometry the commutator of two vector
fields is given by

[X, Y ] = ∇X Y −∇Y X

and for every vector field X we have the condition ∇Xg = 0.
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The connection and the Riemann tensor in the noncoordi-
nate basis {eν} are given with

Γµαβ =
1

2
gµσ (eαgβσ + eβgασ − eσgαβ)

−1

2
gµσ(gαρC

ρ
βσ + gβρC

ρ
ασ)− 1

2
Cµ

αβ ,

Rσ
αµν = eµΓσαν − eνΓσαµ + ΓρανΓ

σ
ρµ − ΓραµΓσρν − ΓσαρC

ρ
µν ,

where Cµ
αβ = Γµβα − Γµαβ.

Hereinafter we suppose that

M = T1 × Σt
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Let us introduce the noncoordinate basis of vector fields
{e⊥, ea}

[e⊥, ea] = C⊥⊥ae⊥ + Cd
⊥aed ,

[ea, eb] = Cd
abed ,

with the structure functions

C⊥⊥a = ealnN, Cd
⊥a =

1

N
(N bCd

ab + eaN
d)

The metric in the corresponding dual basis {θ⊥, θa}

g = −θ⊥ ⊗ θ⊥ + γab θ
a ⊗ θb,
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where γ is the induced metric on the submanifold Σt. The
components of the vector field X0 in this basis

X0 = Ne⊥ +Naea

are the Lagrange multipliers in ADM scheme which can be
obtained if we pass to the coordinate basis {X0 = ∂

∂t
, ∂
∂xa
}

g = −
(
N2 −NaNa

)
dt⊗ dt+ 2Nadt⊗ dxa + γabdx

a ⊗ dxb

The second fundamental form characterizes the embeding
of
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Σt in (M, g)

K(X, Y ) : TxM× TxM→ R

K(X, Y ) =
1

2
(Y.∇Xe⊥ − X.∇Y e⊥) , X, Y ∈ TΣt

The another representation for the extrinsic curvature is

Kab = −1

2
Le⊥γab

To find the 3 + 1 decomposition we define the induced on
the Σt connection

3Γcba := Γcba = 〈3θc, 3∇eaeb〉,
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where 3∇X is the covariant derivative with respect to γ and
corresponding curvature tensor is

3R(X, Y ) = 3∇X3∇Y − 3∇Y 3∇X − [3∇X , 3∇Y ]

In the basis {e⊥ , ea} we find the componets of the connection

Γ⊥⊥⊥ = 0, Γ⊥⊥i = 0,

Γj⊥⊥ = cj, Γj⊥i = −Kj
i,

Γ⊥i⊥ = ci, Γ⊥ji = −Kji,

Γj i⊥ = −Kj
i + 〈3θj,Le⊥ei〉, Γkij = 3Γkij
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and of the Riemann tensor

Rj
⊥k⊥ = KjsKsk + γjsLe⊥Kks +

1

N
γjs3∇ek 3∇esN ,

R⊥ijk = 3∇ekKij − 3∇ejKik ,

Rs
ijk = 3Rs

ijk +KikK
s
j −KijK

s
k

Finally the scalar curvature can be obtained in the form

R = 3R +K a
a K

b
b − 3KabK

ab − 2

N
γab3∇ea3∇ebN − 2γabLe⊥Kab

The classical behavior of the dynamical variables N , Na, γ
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is determined by the Hilbert-Einstein action

L[N,Na, γab,
.

N,
.

Na,
.
γab] =

t2∫
t1

∫
S

dt 3σN

{
3R +K a

a K
b
b − 3KabK

ab

}

−
t2∫
t1

∫
S

dt 3σN

{
2

N
γab 3∇ea 3∇ebN − 2γab Le⊥Kab

}

where 3σ =
√
γ θ1 ∧ θ2 ∧ θ3 is the volume 3-form on Σt.
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1.2. Bianchi models

L. Bianchi 1897
Sugli spazii atre dimensioni du ammettono un gruppo continuo di
movimenti
Soc. Ital. della Sci. Mem. di Mat.
(Dei. XL) (3) 3 267

By definition, Bianchi models are manifolds with product
topology

M = R×G3

On the three dimensional Riemannnian manifold Σtγ there
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exist left-invariant 1-forms {χa} such that

dχa = −1

2
Ca

bc χ
b ∧ χc

The dual vector fields {ξa} form a basis in the Lie algebra
of the group G3

[ξa, ξb] = Cd
abξd

with structure constants Cd
ab = 2 dχd(ea, eb). In the invariant

basis
[e⊥, ea] = Cd

⊥aed, [ea, eb] = −Cd
abed,

with Cd
⊥a = N−1N bCd

ab the metric takes the form

g = − θ⊥ ⊗ θ⊥ + γab θ
a ⊗ θb
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The preferable role of this choice for a coframe is that the
functions N,Na and γab depend on the time parameter t
only. Due to this simplification the initial variational prob-
lem for Bianchi A models is restricted to a variational prob-
lem of the “mechanical” system

L (N,Na, γab, γ̇ab) =

t2∫
t1

dt
√
γN

[
3R−K a

a K
b
b +KabK

ab
]
,

where 3R is the curvature scalar formed from the spatial
metric γ

3R = −1

2
γabCc

daC
d
cb −

1

4
γabγcdγijC

i
acC

j
bd,
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and

Kab = − 1

2N

(
(γadC

d
bc + γbdC

d
ac)N

c + γ̇ab
)

is the extrinsic curvature of the slice Σt defined by the re-
lation

Kab = −1

2
Le⊥γab

In the theory we have four primary constraints

π :=
δL

δṄ
= 0 , πa :=

δL

δṄa

= 0

πab :=
δL

δγ̇ab
=
√
γ(γabK

i
i −Kab)
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The symplectic structure on the phase space is defined by
the following non-vanishing Poisson brachets

{N, π} = 1, {Na, π
b} = δba, {γcd, πrs} =

1

2

(
δrcδ

s
d + δscδ

r
d

)

Due to the reparametrization symmetry of inherited from
the diffeomorphism invariance of the initial Hilbert-Einstein
action, the evolution of the system is unambiguous and it
is governed by the total Hamiltonian

HT = NH +NaHa + u0P
0 + uaP

a

with four arbitrary functions ua(t) and u0(t). One can verify
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that the secondary constraints are first class and obey the
algebra

{H,Hb} = 0, {Ha,Hb} = −Cd
abHd

From the condition of time conservation of the primary
constaraints folllows four secondary constaraints

H =
1
√
γ

(
πabπab −

1

2
πaaπ

b
b

)
−√γ 3R, Ha = 2 Cd

abπ
bcγcd,

which obey the algebra

{H,Ha} = 0, {Ha,Hb} = −Cd
abHd

The Hamiltonian form of the action for the Bianchi A mod-
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els can be obtained in the form

L[N,Na, γab, π, π
a, πab] =

t2∫
t1

πabdγab −HCdt

where the canonical Hamiltonian is a linear combination of
the secondary constraints HC = NH +NaHa.
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1.3. Hamiltonian reduction of Bianchi I cosmol-
ogy

In the case of Bianchi I model the group which acts on
(Σt, γ) is T3 and the action takes the form

L[N,Na, γab, π, π
a, πab] =

t2∫
t1

πabdγab −NHdt .

Using the decomposition for arbitrary symmetric non-singular
matrix

γ = RT (χ)e2XR(χ) ,
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where X = diag‖x1, x2, x3‖ is diagonal matrix and

R(ψ, θ, φ) = eψJ3eθJ1eφJ3

we can pass to the new canonical variables

(γab, π
ab) =⇒ (χa, pchia ;xa, pa)

The corresponding momenta are

π = RT

(
3∑
s=1

Ps αs +
3∑
s=1

Ps αs
)
R
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where

Pa = pa ,

Pa = − 1

4

ξa
sinh(xb − xc)

, (cyclic permutations a 6= b 6= c)

and the left-invariant basis of the action of the SO(3,R) in
the phase space with three dimensional orbits is given by

ξ1 =
sinψ

sin θ
pφ + cosψ pθ − sinψ cot θ pψ,

ξ2 = −cosψ

sin θ
pφ + sinψ pθ + cosψ cot θ pψ ,

ξ3 = pψ
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In the new variables the Hamiltonian constraint reads

H =
1

2

3∑
a=1

p2
a −

∑
a<b

papb +
1

2

∑
(abc)

ξ2
c

sinh2(xa − xb)
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Many thanks

TO THE ORGANIZERS

for the nice Conference !!!

Also many thanks to all of you !!!

I hope we will see each other
in the next edition of the Conference . . .


	Homogeneous cosmological models
	Spacetime decomposition
	Bianchi models
	Hamiltonian reduction of Bianchi I cosmology


