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CMS models
More than thirty five years after the famous paper of

Francesco Calogero

Solution of the one-dimensional n-body problem with quadratic
and/or inversely quadratic pair potentials

Journal of Mathematical Physics 12 (1971) 419-436

Bill Sutherland
Physical Review A 1971, 1972

Jiirgen Moser
Adv. Math. 1975
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CMS models
The Calogero-Sutherland-Moser type system which con-

sists of n-particles on a line interacting with pairwise po-
tential V(z) admits the following spin generalization

Hpcy = Zpa+ Zfabfba To 00y
a;éb

4 < 3/95 > >l



CMS models
The Euler-Calogero-Sutherland-Moser type systems are

integrable in the following cases
I V(z)— o= Calogero

II. V(z)=a?sinh2az
III. V(z) =a?sin"?az  Sutherland
IV. V(z) = a’p(az)

V. V(z)=z?2+wz? Calogero
The nonvanishing Poisson bracket relations

N — O, B i — Ovcfad — Ocafo

et < 4/95 | |



Dynamics on Lie groups

Let G be a real Lie group and A(G) be its Lie algebra. The
action of the Lie group G in its group manifold is given by
the following diffeomorphisms

I G L,h = gh
e R — hg h,g €@

The adjoint and coadjoint actions are

RN A(G) Ad,, — Ad,Ad,
Ad: - A(G) — A(G) Adl, = AdLAd:

4« <« 5/05 > »b O



Dynamics on Lie groups

The Lie-Poisson brackets are

{F,H} =< «,[VF(z), VH(2)] >,
oF OH
e - O S e A*(G
{ ? } ”xkaxi ax]7 T ( )
The left and right invariant 1-forms obey the First structure
Cartan equation
dw® +wt AWl =0,
o SN B

d <« 695 > »b O



Dynamics on Lie groups

The geodesic flow on the matrix Lie group G is described
by the map

t—gt) eqG
and by the Lagrangian

1
L=§<w,w>, w € A(G)
In local coordinates we have
1 v
i 3 &0 X' X

<« <« 7[ 95 > »ri



Dynamics on Lie groups

The phase space is the cotangent bundle T%(G) with
canonical symplectic structure

Q= d(PMdX")
] — 0,{PM,PV} = 0, { X%, B} .
and Hamiltonian

1 174
H=_G"PF,P,

4 <« 895 > »b O



Dynamics on Lie groups
Let us define the functions

LR ey Ry

such that
gR Adny
with Poisson bracket relations
{£§7€ } = C’yﬁg'? )
{éa?gﬁ} = aﬂéfy ]
it =0

e <« 95 > Bb O



Geodesic flow on GL(n,R) group manifold

Let us consider the Lagrangian

1
b 5 <w,w>, wE€ gln,R)

which is defined by the following one parameter family of
non-singular metrics on GL(n,R) group manifold

«

B T XY - TrX TrY

an —

where XY € gl(n,R) and « € [0, 1]

e« <« 10/95 » >l
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@)
Geodesic flow on GL(n,R)
Thus we have

1 L .
= b () g )=
Y G;bl,cd gab gcd

2
Here g € GL(n,R) and
«
Gab,cd = Yad Yeb — 5 Gab Ged »
=1l —i il a —i1 ]
Gab,cd = 9da Ybc — ST 9va Gdc

e <« 11795 »  »pi



Geodesic flow on GL(n,R)
The invariance of the Lagrangian under the left and right

translations leads to the possibility of explicit integration
of the dynamical equations

d

o (9’19) = 0= g(t) = g(0) exp (tJ)

The canonical Hamiltonian corresponding to the bi-invariant
Lagrangian L is

Al = %tr (7rTg)2 = %tr2 (WTg) = ;Gab,cd Tab Ted

¢ <« 12/95 > Pl
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Geodesic flow on GL(n,R)

The nonvanishing Poisson brackets between the fundamen-
tal phase space variables are

{gab ) 7Tcd} — O

At first we would like to analyze the following symmetry
action on SO(n,R) in GL(n,R)

g—g =Ry

It is convenient to use the polar decomposition for an arbi-

trary element of GL(n,R)
= OS

¢ <« 13795 > ppl



Geodesic flow on GL(n,R)

The orthogonal matrix O(¢) is parameterized by the Euler

angles (¢, - ,¢nn-1 ) and S is a positive definite symmetric
2

matrix

We can treat the polar decomposition as 1 — 1 transforma-
tion from n? variables g to a new set of Lagrangian variables:

4] == (Salm(ba) )

the @ Euler angles and @ symmetric matrix variables

Sab

e« <« 14795 > »pi



Geodesic flow on GL(n,R)

In terms of these new variables the Lagrangian can be
rewritten as
1 L N
L = §tr<@L—|—SS )
The polar decomposition induces a canonical transforma-

tion
(ga 71') e (Saba Pab; ¢a7 Pa)

The canonical pairs obey the Poisson bracket relations

1
e L = 5 (0acObd + 0addbe) {ds, Pot — s

¢ <« 1595 > ppi



@)
Geodesic flow on GL(n,R)

In the case of GL(3,R) the orthogonal matrix is given by
O(1, o, P3) = 2172 9271?33 € SO(3,R). The canonical trans-
formation is given by

(g,ﬂ') = (SabaPab;qbaaPa) )

where
B O(P—k.J,) ,
ka = 7(1_111 (nlf — Ebmn (SP)mn)

and
Yik = Sik — Oik tLS

¢ <« 16/95 > > C



@)
Geodesic flow on GL(n,R)

Here nl are three left-invariant vector fields on SO(3,R)

= - i Py — cos ¢35 Py + cot ¢y sin @3 Ps

sin (bg
oS )

775 = 03 P, + sin ¢3 P, + cot ¢y cos g3 Ps,
sin ¢o

ny =—P

e < 1795 > »b O



Geodesic flov

The right-invariant vector fields are

sin ¢1
sin ¢o
coS ¢

. P3 )
sin ¢

nf:—sin¢1 cot gpo Py + cos o1 P + Ps,

772R = cos @1 cot ¢pg P; +sin¢; Py —
n5 = Py




Geodesic flow on GL(n,R)

In terms of the new variables the canonical Hamiltonian
takes the form

1 1
H = Str (PS) - %trQ (PS) + 5tr (JaSJoS) kaks

The canonical variables (S, P,;) are invariant while (¢, , P,)
undergo changes

e« <« 19795 > ppi



Geodesic flow on GL(n,R)

The configuration space S of the real symmetric 3 x 3 ma-
trices can be endowed with the flat Riemannian metric

ds®> =< dQ,dQ >= TrdQ?,

whose group of isometry is formed by orthogonal trans-
formations ' = RT Q R. The system is invariant under the
orthogonal transformations S’ = RY S R. The orbit space is
given as a quotient space §/SO(3,R) which is a stratified
manifold

4« <« 20/95 > P



Geodesic flow on GL(n,R)

(1) Principal orbit-type stratum,
when all eigenvalues are unequal z; < x; < 3
with the smallest isotropy group Z,; ® Z,
(2) Singular orbit-type strata
forming the boundaries of orbit space with
(a) two coinciding eigenvalues (e.g. x; = z3) ,
when the isotropy group is SO(2) ® Z»
(b) all three eigenvalues are equal (z; = x5 = z3) ,
here the isotropy group coincides with the isometry

group SO(3,R)

e <« 21795 > P



Geodesic flow on GL(n,R)
Hamiltonian on the Principal orbit

To write down the Hamiltonian describing the motion on
the principal orbit stratum we use the main-axes decompo-
sition in the form

B & e R,
where R(x) € SO(3,R) is parametrized by three Euler angles

x = (x1, X2, x3) and X is a diagonal e2X = diag ||e?®!, e2*2, €2%3||

e <« 22/95 > PP



@)
Geodesic flow on GL(n,R)

The original physical momenta P, are expressed in terms
of the new canonical pairs

(Sab’ Pab) e (xaapa§ Xas an) )
where

3 3
o Rl X <Z Palla + > Paaa> e 2R
a=1

a=1

4 < 2395 > »b O



@)
Geodesic flow on GL(n,R)

D &

&= ~ 4sinh(z, — z.)’

(cyclic a # b # ¢)

In the representation we introduce the orthogonal basis for
the symmetric 3 x 3 matrices as = (@;, ®;), i = 1,2,3 with the
scalar product

BRSO tr(a, ap) = 20,,, tr(ag o) =0

¢ <« 24795 > »p C



@)
Geodesic flow on GL(n,R)

In this case the SO(3,R) right-invariant Killing vector fields
are

6{2 = _pX1 )

ER = sin y; cot — Cos _ SEE
g — il X2 px1 X1 px2 sin Y2 pX37
R . COS X1

53 = — COS X1 cot xa Dy, — SINX1 Dy, + @ Dxs

4 < 25/95 > bb O



Geodesic flow on GL(n,R)

After passing to these main-axes variables the canonical
Hamiltonian reads

i3 9 o o e
—S;pa—w(;pa)

. Z&_lz (R + 2§R>
16 (abo) sinh? (.CL“b = .?IC) 4 o) cosh? (gjb & -fEc)

The integrable dynamical system describing the free motion
on principal orbits represents the
Generalized Euler-Calogero-Moser-Sutherland model

¢ <« 26/95 > P

O
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@)
Geodesic flow on GL(n,R)

Reduction to Pseudo-Euclidean
Euler-Calogero-Moser model

We demonstrate how 114, Euler-Calogero-Moser-Sutherland
type model arises from the Hamiltonian after projection

onto a certain invariant submanifold determined by dis-

crete symmetries. Let us impose the condition of symmetry

of the matrices g € GL(n,R)

wgu = EabcYbec = 0

4 < 27/95 > Bb O



Geodesic flow on GL(n,R)

One can check that the invariant submanifold of T*(GL(n,R))
is defined by
= ¥, v?)

and the dynamics of the corresponding induced system is
governed by the reduced Hamiltonian

1
Hly 0 = 5 tr (PS)" - %n«? (PS)

¢ <« 28/95 > P



@)
Geodesic flow on GL(n,R)

The matrices S and P are now symmetric and nondegener-
ate.

It can be shown that

H = 23: 2 g ( B + )2 +1 Z &
PECM = a:1pa 9 b1 P2 T P3 5 - sinh2(xb = xc)

which is a Pseudo-Euclidean version of the Euler-Calogero-
Moser-Sutherland model.

¢ <« 29/95 > PP



Geodesic flow on GL(n,R)
After the projection the Poisson structure is changed ac-
cording to the Dirac prescription

{F,G}p = {F,G}pp — {F,¥a}Crp{¥s, G}

To verify this statement it is necessary to note that the
Poisson matrix Cyp = ||[{yW, 152)}” is not degenerate. The
resulting fundamental Dirac brackets between the main-
axes variables are

1 1

{xmpb}D s 5 5aba {mexb}D = 5 5ab

e« <« 30/95 > P



Geodesic flow on GL(n,R)
The Dirac bracket algebra for the right-invariant vector
fields on SO(3,R) reduces to

{5111% }D S 6abc R

All angular variables are gathered in the Hamiltonian in
three left-invariant vector fields nZ. The corresponding right-
invariant fields n® = O,, ' are the integrals of motion

{nf, Hppcm} =0

¢ <« 3195 > »p



Geodesic flow on GL(n,R)
Thus the surface on the phase space, determined by the
constraints

nd =1

defines the invariant submanifold. Using the relation be-
tween left and right-invariant Killing fields n* = O, nf we
find out that after projection to the constraint surface the
Hamiltonian reduces to

«

9 (p1 + p2 + p3)2 % Z (&)"

(a5 sinh?2(z, — )

3
4Hppem = Y _ps —
a

¢ <« 32/95 > P



Geodesic flow on GL(n,R)

Apart from the integrals n* the system possesses other inte-
grals. The integrals of motion corresponding to the geodesic
motion with respect to the bi-invariant metric on GL(n,R)
group are

Jab == (ﬂ'Tg)ab
The algebra of this integrals realizes on the symplectic level
the GL(n,R) algebra

{Jaln ch} = 6chad = 5ad<]cb

¢ <« 33/95 > »p



@)
Geodesic flow on GL(n,R)

After transformation to the scalar and rotational variables
the expressions for the current J reads

1 3
J:§ ZRT<pa@a_iaaa_ja‘]a>R7

a=1

where
1 1
= > E2 coth(zp — z.) + <Ram nt + 5 ff) tanh(zy — )
(abc)
and

ja . Ramann +€5

e < 3495 > »b O



@)
Geodesic flow on GL(n,R)

After performing the reduction to the surface defined by
the vanishing integrals

ja:O

we again arrive at the same Pseudo-Euclidean version of
Euler-Calogero-Moser-Sutherland system.

4« < 35/95 > »b O



Geodesic flow on GL(n,R)

Lax representation for the Pseudo-Euclidean
Euler-Calogero-Moser model

The Hamiltonian equations of motion can be written in a
Lax form

£ = [A, 5],

where the 3 X 3 matrices are given explicitly as

¢ <« 36/95 > P



Geodesic flow on GL(n,R)

p1 — % (p1 + p2 + p3) L3, Ly
e p2 — 5 (p1 + P2 Ly
558 Ly, p3 — 5 (pl T PR
3
A= i Az, 0, —A;
—Ay, A1, O

¢ <« 3795 > P



@)
Geodesic flow on GL(n,R)

Entries 4, and LT are given as

it 1
s — 5 &2 coth(zy — x.) — (Ram Th e - o ) tanh(zp — z.)

)

1 & e UE SR
2 ginh*(z, — z,) cosh®(zy — )

¢ <« 38/95 » pp



Geodesic flow on GL(n,R)
Singular orbits. The case of GL(3,R) and GL(4,R)

The motion on the Singular orbit is modified due to the
continuous isotropy group. This symmetry of dynamical
system is encoded in constraints on phase space variables

¢1=%($2—1’3), 152:%(]92—])3)7
s = &5 — &7, i — 1o

¢ <« 39/95 > P



Geodesic flow on GL(n,R)

One can check that this surface represents the invariant
submanifold. These constraints are the second class in the

Dirac terminology hence we have to replace the Poisson
brackets by the Dirac ones

{xlvpl}D = 1a {x’up]}D =
66 3p=0, ab=1,

- ), ) =
— 7) =
2 7] 0= 9
2,3

¢ <« 40795 > P



@)
Geodesic flow on GL(n,R)

As a result we obtain

1 1 572
H 2
é’l)l(S,R) 2 1 % 4 1 g

sinh?(z; — )

This is an integrable mass deformation of the
ITA; Calogero-Moser-Sutherland model.

The Lax pair for system can be obtained from the L and

A matrices letting n' = 0 and projecting on the constraint
shell

e« <« 4195 > »p C



Geodesic flow on GL(n,R)

%pla _€§L+v _§§L+

(2) D
Lérary = | L™, 3p2 0
5‘[’_7 07 %p2
0 —-1,1
GL(3,R) — ]-7 07 0

sinh®(z; — x,)
L 00

e <« 42/95 > P



Here

L™ := (1 — coth(z; — x3)) ,
Lt := (1 + coth(z; — z2))




O
Geodesic flow on GL(n,R)
Consider the case of GL(4,R) group restricted on the Sin-
gular orbit with equal eigenvalues x3 = x4. The invariant
submanifold is fixed by the five constraints

Py = % (133 —2174) )
1

o 1= ﬁ (ps —P4) )

¢3 = l§%4a

77[]4 :=lf§—lﬁ,
s =15 — 15,

a4 < 4495 > Bb O



@)
Geodesic flow on GL(n,R)

The Poisson matrix ||{¢m,¥n}]| ,m,n=1,...,5 is degenerate

with rank||{¢,,,¥,}|| = 4. To find out the proper gauge and

simplify the constraints it is useful to pass
lfb:yaﬂ-b_ybﬂ-ay {yaaﬂ-b}:daba a,,b:l,...,4

and choose the following gauge-fixing condition

= I

w:=~—§(y3—y4):0

4 < 45/95 > »b O



Geodesic flow on GL(n,R)

Finally the reduced phase space corresponding to the Sin-
gular orbit is defined by the set of four second class con-
straints {«,II, ¢, I}

7,[112 ($3—$4):0, RIG:=

(ps—pa) =0,

Pi=—=(ys—ys) =0, -

(7T3_7T4):07

-
Sl

¢ <« 46/95 > P



@)
Geodesic flow on GL(n,R)

This set of constraints form an invariant submanifold of the
phase space under the action of the discrete permutation
group S

B [ P50 ’ %) L ’

y2 Ps(i) Uy TS(i)

where i = 3,4.

e < 4795 > »b O



@)
Geodesic flow on GL(n,R)

These constraints form the canonical set of second class
constraints with non-vanishing Poisson brackets

{1} =1, {¢, I} =1

and thus the fundamental Dirac brackets for canonical vari-
ables are

1

1 N
S — 2 6 Tl = 3 i,7=1,2

4 < 4895 > »b O



Geodesic flow on GL(n,R)

The system reduces to the following one

) 1, 1
L= 5P+ 5 P5+ 4 P
(i%)? (i) (I55)°

16sinh®(x; — ;)  8sinh®(x; —x3)  8sinh®(zy — x3)

with the Poisson bracket algebra

{xr 7]75} s 57"5 5
N Ol + gl — 8yl p, g, 5=1,2,3

pq’°rs

¢ < 49795 > »p

O
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Geodesic flow on GL(n,R)

In this case L and A matrices are the well-known matrices
for the spin Calogero-Sutherland model

1
ipiéij — 5ij)lgq)(5’3i — I8

Lij —
Ay = —(1 = 8153V (i — ),

where

®(z) = coth(z) + 1, Viz) = 251n1hQ(x)

¢ <« 50/95 » »p



@)
Geodesic flow on GL(n,R)

After projection to the invariant submanifold correspond-
ing to the motion on the Singular orbits we arrive at the
Lax matrices

p, Do, —If®1s, —lfi s

L(ngMR) - —If®1o,  Ipy, IR Pa3, —I5Pos
’ —l{%q)w, _l§3®237 %p?n 0
—l%@lg, —l%@gg, 0, %p3

¢ <« 5195 » pp



Geodesic flow on GL(n,R)

0, IRV, WiVas, Vi
—IfiVis 0, 15V, I5Vas
—1itVis, —1fVas, O, 0
—lft,)Vl;),, —lggvgg, 0, 0

3)
A(GL(4,R)

¢ <« 52/95 > pp



Geodesic flow on gi(n,R)

Consider the Lagrangian represented by the left-invariant
metric

10 N
E— 5 A,A> AeGLn,R)
which is defined on gi(n,R) algebra

e Tr XY, X,Y € gl(n,R)

¢ <« 53/95 » pp
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Geodesic flow on gi(n,R)
The obviously conserved angular momentum

B = [A7A]

leads to the possibility to integrate the equations of motion
A =0 in the form A = at + b. The canonical Hamiltonian cor-
responding to L is

e %tr (PTP)2

44 < 5495 >



Geodesic flow on gi(n,R)

The nonvanishing Poisson brackets between the fundamen-
tal phase space variables are

{Aab s Pcd} = 5ab 5cd

Using the same machinery as in the previous case we obtain
the Hamiltonian

7

H:§Z’p3+42(£_"i)2+z< o+ 4e1)

a=1 (abc) <xb (abc) (xb = ZEC)

which is a generalization of the

rational Euler-Calogero-Moser-Sutherland model
¢ <« 5595 » P

O



Geodesic flow on gi(n,R)

After reduction on the invariant submanifold defined by the
equations nf = 0 we obtain the Hamiltonian

i 8 1 ik 1
B 5+ = D (Y o
2 a;l 4 (%,;) (xb = xc)Q (fBb = $c)2

which coincides with the Hamiltonian of the
ID; Euler-Calogero-Moser-Sutherland model

¢ <« 56/95 > pp
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O

Geodesic motion on GL(n, R)

Forty years after the famous papers of
M. Toda

Journal of Physical Society of Japan 20 (1967) 431
Journal of Physical Society of Japan 20 (1967) 2095

The Hamiltonian of the non-periodic Toda lattice is

1 n n—1
Hypr = 2 Zpi sk 92 Z exp [2(zo — T e
a=1 a=1

and the Poisson bracket relations are

{xhpj} = 5ij ¢

¢« <« 57/95 » Py
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@)
Geodesic motion on GL(n, R)

The equations of motion for the non-periodic Toda lattice
are

g = T0hs (@6 = IEAR 1

Do = —2 €xp [2<xa = xa-l—l)] + 2 exp [2(Ia—1 & xa)] )
P1 = —2 exp [2(z1 — x9)],

2 exp [2(2,—1 — z,)],

and for the periodic Toda lattice
T, — Pa »

Pa = 2 exp [2(za—1 — %a)] — exp [2(20 — Zat1)]-

44 < 58/95 > O



Geodesic moti

Further for simplicity we put k,, = 0 and a = 0.

We use the Gauss decomposition for the positive—deﬁ
symmetric matrix S

S = 7 B




@)
Geodesic motion on GL(n, R)

Here D = diag ||z, xs, . .. z,|| is a diagonal matrix with posi-
tive elements and Z is an upper triangular matrix

1212---Z1n
01 ... 29n
O IR |

¢ <« 60/95 » Pp C



Geodesic motion on GL(n, R)
The differential of the symmetric matrix S is given by

dS = Z [dD + DQ + (DQ)T] 27,
where (2 is a matrix-valued right-invariant 1-form defined
by
DA

In the Lie algebra gi(n,R) of n xn real matrices we introduce
Weyl basis with elements

(eab)ij — 5ai 5bj )

¢ <« 6195 » »p

O



@)
Geodesic motion on GL(n, R)

which are n x n matrices in the form

€ab =

The scalar product in gl/(n,R) is defined by

(eab 5 ecd) = tr(efb ) ecd) = 5ac 5bd .

4 < 6295 > »b O



Geodesic n

Let us introduce also the matrices







Geodesic m

with scalar product is defined by

(C—Ya 5 db) = tr(a’a C_Yb) = Oab »
(aab 5 acd) = tI‘(Oéab acd) =2 (5ad 5bc Sl 5ac 5bd) 5
e — tr(a, 0;.) = 0.




Geodesic motion on GL(n, R)

Now we can write the differential of the matrix S in the
form

S = Zdl’ada—l— Z 2,00 ol

a—1 a<b=1
Here (),, are the coefficients of the matrix (2

Q:ZQabeab'

a<b

¢ <« 66/95 > Pp



Geodesic motion on GL(n, R)

In the case of Gauss decomposition of the symmetric matrix
S = ZDZ" the corresponding momenta we seek in the form

R (Z7) ! (Z Pati, + Y aab) 7
a=l

a<b

¢ <« 6795 » »p



@)
Geodesic motion on GL(n, R)
From the condition of invariance of the symplectic 1-form

tr (PdS) =) p,dz, T DS Ene
i=1 a<b=1

where the new canonical variables (z,,ps), (Za,Pas) Obey
the Poisson bracket relations

{ma apb} = 5ab > {Zab 7pcd} = 5@0 5bd s

we obtain
i lab

D

44 < 68/95 > »b O



Geodesic motion on GL(n, R)

Here [, are right-invariant vector fields on the group of
upper triangular matrices with unities on the diagonal

lap = (Q_I)Zb,cd Ped

where ()., .; are coeflicients in the decompositions of the
1-forms (2,, in coordinate basis

Qab = Qab,cd dzcd ;

¢ <« 69/95 > »p



Geodesic m

The canonical Hamiltonian in the new variables tz

22_ 2%
pr+42l =

form

a<b=1




@)
Geodesic motion on GL(n, R)

After the canonical transformation
o= €%, Do = Mg € %

we arrive to Hamiltonian in the form of
spin nonperiodic Toda chain

ZT{' —1—7 Z l2 edasdel

a<b 1

¢ <« T1/95 > »p O



Geodesic motion on GL(n, R)

The explicit form of the generators of the group of upper
triangular matrices is

li2 = p12 + Z 2ok Pk 5 his =p13+ Z 22k Pk -
= k=2

The internal variables satisfy the Poison bracket relations

AN Ol (1)

with structure coefficients

0.0y - (2)

¢ <« T72/95 > P

O



1. Homogeneous cosmological models
1.1. Spacetime decomposition

Let (M, g) be a smooth four-dimensional paracompact and
Hausdorf manifold. In each point of the open set Y C M we
propose that are defined the local basis of 1-forms and its
dual basis

e —0, 1, 2, 3} e -0, 1, 2 3}
<« 24!

< 7395 »



such that

leas 5] = CF 50
where C*_; are the basis structure functions. The symmetric
metric is

jny

g= g;ww“ ® w”, 9_1 =g eQe

We suppose that on the manifold (M, g) is defined affine
connection V

BN [ — (W', V. e5)

In manifold with affine connection we can construct the
4 < T4/95 > Bb O



bilinear antisymmetric mapping
TX,)Y)=VxY -WX —[X,Y]

The First Cartan structure equation is

i
ot 1T, Ao =S

The tensor type (1,3) defined by
B V) = (w, R( X, Y)Z)
is called the curvature tensor, where

R(X, ¥) = ViV — Vv Vx — [Vx, W]

< 7595 »



If we define the curvature 2-form (2, by
O = dI SR .

one can obtain the Second structure Cartan equation
O, = LR 0% A WP
DA 2 ¢ Vaﬁw w
In the Riemannian geometry the commutator of two vector
fields is given by
[X, Y] = VxY - W X

and for every vector field X we have the condition Vxg = 0.
¢ <« T76/95 > P

O



The connection and the Riemann tensor in the 1
nate basis {¢,} are given with

1 o
Fﬂaﬁ S §gﬂ (eag,é’a S5 €900 — eagaﬂ)

I 1
__gli (gapcpﬁa S gﬁpcpoza) N QCMQIB )

2
o o @ N o P g NNRp o _ 710 P
R el 1T, — I

where C* 5 = I, —T* ;.

inafter we suppose that




Let us introduce the noncoordinate basis of vex

{eJ-7 ea}

B e —Cl el +C4 en
[em eb] = Cdabed ;

with the structure functions

1
CJ_J_a = ealnN, CdJ_a = N(Nbcdab + eaNd)

metric in the corresponding dual basis {6+, 6¢}

g=—0"®6 +7,6*°®¢,



O
where 7 is the induced metric on the submanifold ¥;. The

components of the vector field X, in this basis
X() = N€J_ aF N“ea

are the Lagrange multipliers in ADM scheme which can be

obtained if we pass to the coordinate basis {X, = %, a%a

g=— (N2 - N“Na> dt @ dt + 2N,dt @ dz® + Yepdz® @ dz®

The second fundamental form characterizes the embeding
of

e < 7995 > »b O



Zt in (Mag)
K(X,Y): TyM x TyM — R

1
K(X/Y) — é(Y-vXGJ_ —X.Vyej_)7 XY e T,
The another representation for the extrinsic curvature is
1
Kab = *§LCL’7ab

To find the 3 + 1 decomposition we define the induced on
the >; connection

e g 03

80/95 > »l



where 3V is the covariant derivative with respect to v and

corresponding curvature tensor is

R(X,Y) =°*Vx*W — *W’Vx — [PVx, *W]

In the basis {e, ,e,} we find the componets of the connection

FJ_LL = O’ FlLi S 07

F]J_J_ = &8 FJM = — K7,

== B — Ky
[k — 3Tk



and of the Riemann tensor

. , : 1
B, = KK, o L0 e N’Y

B R Ka K — KK S

]sBVEk 3V65N,

Finally the scalar curvature can be obtained in the form

T
BN — 3K K — W““vefveij — 2y L,

The classical behavior of the dynamical variables N, N¢, ~
e <« 82957 »  »p O



is determined by the Hilbert-Einstein action

N 0, V. Na, Y| = //dt JN{3R+K GRS
t1S

to N
2
. / / dt BUN{NW’ 3, 3V, N — 29 ECLKab}

t1S

o =/ 0" NO* A& is the volume 3-form on Y.




1.2. Btancht models

L. Bianchi 1897
Sugli spazii atre dimensioni du ammettono un gruppo continuo di

movimentt
Soc. Ital. della Sci. Mem. di Mat.
(Dei. XL) (3) 3 267

By definition, Bianchi models are manifolds with product
topology

M:RXGg

On the three dimensional Riemannnian manifold ;v there
¢ <« 84795 > »p



exist left-invariant 1-forms {x*} such that

a 1 a C
dx === X

The dual vector fields {{,} form a basis in the Lie algebra
of the group G

[5(17 gb} S d(ngd
with structure constants C%, = 2dy%(e,, e;). In the invariant
basis

O e, Loel= Ol

with C% = N 'N°C?, the metric takes the form

0L®0L+ ,yabea®0b
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The preferable role of this choice for a coframe is that the
functions N, N® and v, depend on the time parameter ¢
only. Due to this simplification the initial variational prob-
lem for Bianchi A models is restricted to a variational prob-
lem of the “mechanical” system

to
L (N, Na, Yabs Yab) = /dt VAN [ R K . KabK“b] :
t1

where °R is the curvature scalar formed from the spatial
metric y

1 ab e 1 ab_ c i j
3R &S _57 bC dacdcb i 17 bfy d’yijC accjbda
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N 1 d d c :
oh — —oN ( (YadC%e + Y6dC%e) N€ + Yab )

is the extrinsic curvature of the slice ¥; defined by t

lation |
Kab = _§£el7ab

In the theory we have four primary constraints

oL oL
= — = T = —
ON 0N,

T




The symplectic structure on the phase space is defined by
the following non-vanishing Poisson brachets

1
Mok =1, N} =8, {7} = 500+ 00)

Due to the reparametrization symmetry of inherited from
the diffeomorphism invariance of the initial Hilbert-Einstein
action, the evolution of the system is unambiguous and it
is governed by the total Hamiltonian

Hr = NH + NH, + uo PP + u, P°

with four arbitrary functions u,(t) and uy(t). One can verify
¢ <« 88/95 » pp



that the secondary constraints are first class and obey the
algebra
{H,Hy} =0, {HoHp}=—-C%Hy

From the condition of time conservation of the primary
constaraints folllows four secondary constaraints

1 il

which obey the algebra
{Hv Ha} =0, {Haa Hb} = _CdabHd

The Hamiltonian form of the action for the Bianchi A mod-
« <« 89/95 > »hl



els can be obtained in the form

to

L[N, Na,’}/ab,ﬂ,ﬂ'a,ﬂab] = /W“bd’yab — Hedt

t1

anomcal Hamiltonian is a linear combination of




O
1.3. Hamzaltonian reduction of Bianchi I cosmol-

ogy

In the case of Bianchi I model the group which acts on
(X¢,7) is T3 and the action takes the form

to
L[N, Na,%b,ﬂ,wu,wab] = /ﬂ“bd’yab — NHdt.

t1

Using the decomposition for arbitrary symmetric non-singular

matrix
7= BT (0 R(y) A

« <« 1/9 [



where X = diag||x1, z2, x3]| is diagonal matrix ar
R(v,0, ) = e¥’2ef1#7s
we can pass to the new canonical variables

(’Valn ﬂ—ab) —— (Xaapchia; xa;pa)

The corresponding momenta are

3 B
Zfsas+2Psas)R
s=1 . s



e Zm’ (cyclic permutations a # b # c)

and the left-invariant basis of the action of the SO(3,R) in
the phase space with three dimensional orbits is given by

__ siny

IS

cos — sin ) cot 0
sing L? e A
b= —— ¥ Py + siny pg + cosypcot b py, ,
B sin 0




In the new variables the Hamiltonian con

Zpa Zpapb+ Z Slnh2

a<b (abc) (:I:a _ .’Eb)
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Many thanks

TO THE ORGANIZERS

for the nice Conference !!!

Also many thanks to all of you !!!

I hope we will see each other

in the next edition of the Conference ...
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