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1 Introduction

When we consider parallel transport of a 4-vector of veloc-

ity, the displaced 4-vector is again a 4-vector of velocity. But

if we consider the 4-vector of velocity as a Lorentz boost,

then its parallel displacement may not be a boost, because
may contain a space rotation, and can simultaneously give

information for both the velocity and space rotation of the

considered body. This is the main motivation for the present
paper, where we research a model of 3-dimensional time. The

evidence of the 3-dimensional time appears also in the quan-

tum mechanics, where besides the three spatial coordinate

operators appear 3 impulse coordinates, which are indeed
temporal coordinates.

Albert Einstein and Henri Poincare many years ago thought

about 3-dimensional time, such that the space and time would
be of the same dimension. At present time some of the au-

thors [1-5,7-9] propose multidimensional time in order to give

better explanation of the quantum mechanics and the spin.
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2 Basic results

At each moment the set of all moving frames can be con-

sidered as a principal bundle over R
3, where the structural

group is the Lorentz group of transformations. This bundle

will be called space-time bundle. This bundle can be param-
eterized by the following 9 coordinates

{x, y, z}, {xs, ys, zs}, {xt, yt, zt},
such that the first 6 coordinates parameterize the subbundle
with the fiber SO(3, R) . So this approach in the SR will be

called 3+3+3-dimensional model. Indeed, to each body are

related 3 coordinates for the position, 3 coordinates for the

space rotation and 3 coordinates to its velocity.
Firstly, we consider the analog of the Lorentz boosts from

the 3+1-dimensional space-time. The coordinates xs, ys, zs

and xt, yt, zt are functions of basic space coordinate x, y, and

z, and assume that the Jacobi matrices

V =

⎡
⎢⎢⎢⎢⎣

∂xs

∂x
∂xs

∂y
∂xs

∂z

∂ys

∂x
∂ys

∂y
∂ys

∂z

∂zs

∂x
∂zs

∂y
∂zs

∂z

⎤
⎥⎥⎥⎥⎦ and V ∗ =

⎡
⎢⎢⎢⎢⎣

∂xt

∂x
∂xt

∂y
∂xt

∂z

∂yt

∂x
∂yt

∂y
∂yt

∂z

∂zt

∂x
∂zt

∂y
∂zt

∂z

⎤
⎥⎥⎥⎥⎦
(2.1)

are respectively symmetric and antisymmetric. Further, let

us denote X = xs + ixt, Y = ys + iyt, Z = zs + izt, such

that the Jacobi matrix V = [∂(X,Y,Z)
∂(x,y,z) ] is Hermitian and V =

V + iV ∗.
The antisymmetric matrix V ∗ depends on 3 variables and
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its general form can be written as

V ∗ =
−1

c
√

1 − v2

c2

⎡
⎣ 0 vz −vy

−vz 0 vx

vy −vx 0

⎤
⎦ . (2.2)

From (2.2) we can join to V ∗ a 3-vector �v = (vx, vy, vz),
which transforms as a 3-vector. Namely, let we choose an

orthogonal 3×3 matrix P , which determines a space rotation

on the base B = R
3, applying to the coordinates x, y, z.

Then this transformation should also be applied to both sets
of coordinates {xs, ys, zs} and {xt, yt, zt}. Hence the matrix

V ∗ maps into PV ∗P−1 = PV ∗P T , which corresponds to the

3-vector P · �v. Thus �v �→ P · �v, and �v is a 3-vector.

It is natural to assume that V should be presented in the
form

V = eiA = cos A + i sin A.

Assume that A is an antisymmetric real matrix, which is
given by

A =

⎡
⎣ 0 −k cos γ k cos β

k cos γ 0 −k cos α

−k cos β k cos α 0

⎤
⎦ ,

where �v = c(cos α, cos β, cos γ) tanh(k) and (cos α, cos β, cos γ)
is a unit vector of the velocity vector. As a consequence we

obtain

sin A =
−1

c
√

1 − v2

c2

⎡
⎣ 0 vz −vy

−vz 0 vx

vy −vx 0

⎤
⎦ , (2.3)

i.e. that V ∗ = sin A is given by (2.2), while the symmetric

3 × 3 matrix cosA is given by

(cos A)ij = V4δij +
1

1 + V4
ViVj , (2.4)
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where (V1, V2, V3, V4) = 1

ic
√

1−v2

c2

(vx, vy, vz, ic).

From (2.1) and (2.2) the time vector in this special case is

given by

(xt, yt, zt) =
�v

c
√

1 − v2

c2

× (x, y, z) + (x0
t , y

0
t , z

0
t ), (2.5)

where (x0
t , y

0
t , z

0
t ) does not depend on the basic coordinates.

The coordinates xt, yt, zt are independent and they cover the
Euclidean space R3 or an open subset of it. But the Ja-

cobi matrix [∂(xt,yt,zt)
∂(x,y,z) ] is a singular matrix as antisymmet-

ric matrix of order 3, where the 3-vector of velocity maps
into zero vector. So the quantity (xt, yt, zt) · �v does not de-

pend on the basic coordinates and hence we assume that it

determines the 1-dimensional time t measured from

the basic coordinates. For example, if velocity is parallel
to the z-axis, then zt does not depend on the basic coordi-

nates because ∂zt

∂x
= ∂zt

∂y
= ∂zt

∂z
= 0 and hence zt is propor-

tional with the time from the basic coordinate system. Fur-

ther, one can easily verify that (1 − v2

c2 )
−1/2(�v × (x, y, z)) =

(1 − v2

c2 )
−1/2(�v × (cos A)−1(xs, ys, zs)) = �v × (xs, ys, zs) for si-

multaneous points in basic coordinates. So (2.5) becomes

(xt, yt, zt) =
�v

c
× (xs, ys, zs) + �c · Δt, (2.6)

where �c = �v
v · c.
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3 Local isomorphism between O↑
+(1, 3) and SO(3, C)

Let us consider the following mapping F : O↑
+(1, 3) → SO(3, C)

given by

[
M 0

0 1

]
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
1+V4

V 2
1 − 1

1+V4
V1V2 − 1

1+V4
V1V3 V1

− 1
1+V4

V2V1 1 − 1
1+V4

V 2
2 − 1

1+V4
V2V3 V2

− 1
1+V4

V3V1 − 1
1+V4

V3V2 1 − 1
1+V4

V 2
3 V3

−V1 −V2 −V3 V4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�→ M · (cos A + i sin A), (3.1)

where cos A and sin A are given by (2.4) and (2.3). This is
well defined because the decomposition of any matrix from

O↑
+(1, 3) as product of space rotation and a boost is unique.

Moreover, it is a bijection. In the following theorem is con-
structed effectively such an isomorphism [10].

Theorem 1. The mapping (3.1) defines (local) isomor-

phism between the groups O↑
+(1, 3) and SO(3, C).

Indeed, the mapping⎡
⎢⎢⎣

0 c −b ix

−c 0 a iy
b −a 0 iz

−ix −iy −iz 0

⎤
⎥⎥⎦ �→

⎡
⎣ 0 c + iz −b − iy

−c − iz 0 a + ix

b + iy −a − ix 0

⎤
⎦

defines an isomorphism between the Lie algebras o(1, 3) and

o(3, C). This isomorphism induces local isomorphism be-
tween O↑

+(1, 3) and SO(3, C), and it induces (local) isomor-

phism between the two groups. Further it is proved that this

(local) isomorphism is given by (3.1).
If we want to find the composition of two space-time trans-

formations which determine space rotations and velocities,
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there are two possibilities which lead to the same result: to
multiply the corresponding two matrices from SO(3, C) or

from O↑
+(1, 3). Since the result is the same, the three dimen-

sionality of the time is difficult to detect, and we feel like the
time is 1-dimensional. The essential difference in using these

two methods is the following. The Lorentz transformations

give relationship between the coordinates of a 4-vector with

respect tSo they show how the coordinates of a considered 4-
vector change by changing the base space. On the other side,

the matrices of the isomorphic group SO(3, C) show how the

space rotation and velocity change between two bodies, us-
ing the chosen base space, by consideration of changes in the

fiber. So we have a duality in the SR. The use of the group

SO(3, C) alone is not sufficient, because their matrices are

only Jacobi matrices free from any motion.

4 Preparation for the Theorem 3

(i) In the next section we want to deduce the Lorentz trans-

formations using the group SO(3, C). We assume that there

is no effective motion, i.e. change of the basic coordinates,

but simply rotation for an imaginary angle. Such a trans-
formation will be called passive motion. The examination

of observation of a moving body can easily be done in the

following way.
Let us assume that vx = v, vy = vz = 0. In this case the

matrix V = cos A determined by (2.4) is given by

V = cos A = diag(1,
1√

1 − v2

c2

,
1√

1 − v2

c2

).

Hence there is no length contraction in the direction of mo-

tion (x-direction), while the lengths in any direction orthog-
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onal to the direction of motion (yz-plane) are observed to be

larger (1− v2

c2 )
−1/2

times. Notice that if we multiply all these

length coefficients by
√

1 − v2

c2 we obtain the prediction from

the SR. Hence the observations for lengths for passive and

active motions together is in agreement with the classical

known results.
If there is an active motion, i.e. there is change of the basic

coordinates, independently from the previous effect, we have

the following phenomena. The group SO(3, C) preserves the

quantity (Δx+ icΔtx)
2 +(Δy + icΔty)

2 + (Δz + icΔtz)
2 and

hence also preserves Δx2+Δy2+Δz2−c2(Δt2x+Δt2y+Δt2z) =

Δx2 + Δy2 + Δz2 − c2Δt2.

(ii) The previous conclusion for the spatial lengths can be
supported by the following conclusion about time intervals.

While the observation of lengths may be done in different

directions, the observation of time flow does not depend on

the direction, but only on velocity. The time observed in

a moving system is slower for coefficient
√

1 − v2

c2 for active

motions (analogously to the lengths). It is a consequence

of the relativistic law of adding collinear velocities and it is

presented by the following theorem ([10]).
Theorem 2. Assume that the relativistic law of summa-

tion of collinear velocities is satisfied, and assume that the

observed time in a moving inertial coordinate system with

velocity v is observed to be multiplied with f(v
c), where f is a

differentiable function and the first order Taylor development

of f does not contain linear summand of v/c. Then, f must

be f(v
c ) =

√
1 − v2

c2 .

Since the 1-dimensional time direction is parallel to the

velocity vector, there is no change in the observation of the
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time vector which corresponds to the passive motion. So
the observed change for the time vector considered in the

previous theorem comes only from the active motion.

Using the Theorem 2 and the assumption that the 1 - di-
mensional time is a quotient between the 3-vector of displace-

ment and the 3-vector of velocity, the following conclusion is

deduced in [10]. Let the initial and the end point of a 4-

vector �r′ be simultaneous in one coordinate system S′. Then
these two points in another coordinate system differ for time

δt =

�r′�v
c2√

1 − v2

c2

, (4.1)

where �v is the velocity vector. Notice that (4.1) is also a
consequence from the Lorentz transformations.

(iii) The base manifold R
3 is 3-dimensional. It is conve-

nient to consider it as a subset of C
3, consisting of

(x, y, z, ctx, cty, ctz),

where ctx = cty = ctz = 0 at a chosen initial moment, and
call it complex base. The change of the coordinates can be

done via the 6×6 real matrix

[
M cos A −M sin A
M sin A M cos A

]
, where

M is a space rotation. It acts on the 6-dimensional vectors

(Δx,Δy,Δz, 0, 0, 0)T of the introduced complex base. Multi-

plying the vectors of the complex base (Δx,Δy,Δz, 0, 0, 0)T

from left with this matrix, we obtain 3-dimensional base
subspaces as they are viewed from the observer who rests

with respect to the chosen complex base. Moreover, the

pair ((Δx,Δy,Δz, 0, 0, 0)T , G) ∈ R
6 × SO(3, C) viewed for

moving and rotated base space determined by the matrix

P ∈ SO(3, C) is given by

(P (Δx,Δy,Δz, 0, 0, 0)T , PGP T ) ∈ R
6 × SO(3, C).
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(iv) Until now we considered mainly the passive motions,

while our goal is to consider active motion in the basic coor-
dinates. The active motion is simply translation in the basic

space, caused by the flow of the time. So besides the complex

rotations of SO(3, C) we should consider also translations in
C3. Now (Δctx,Δcty,Δctz) for the basic coordinates is not

more a zero vector. The time which can be measured in basic

coordinates is Δt = [(Δtx)
2 + (Δty)

2 + (Δtz)
2]

1/2
. In case of

motion of a point with velocity �v we have translation in the
basic coordinates for the vector �vΔt + i�cΔt. The space part

�vΔt is obvious, while the time part �cΔt follows from (2.6).

An orthogonal complex transformation may be applied, if
previously the basic coordinates are translated.

5 Lorentz transformations as transformations on C3

For the sake of simplicity we will omit the symbol ”Δ” for

space coordinates. Let the coordinates xs, ys, zs are denoted

by x′, y′, z′ and let us denote �r = (x, y, z) and �r′ = (x′, y′, z′).
It is of interest to see the form of the Lorentz boosts as

transformations in C
3, while the space rotations are identical

in both cases.

Theorem 3. The following transformation in C
3

(1−v2

c2 )
−1/2

[
�r′

�ct′ + �v×�r′
c

]
=

[
cos A − sin A

sin A cos A

] [
�r + �v(t + δt)

�c(t + δt)

]

(5.1)

via the group SO(3, C) is equivalent to the transformation

given by a Lorentz boost determined by the isomorphism (3.1).

The coefficient β = (1 − v2

c2 )
−1/2 is caused by the active

motion (i). There is a translation in the basic coordinates
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for vector (�v(t + δt),�c(t + δt)), where δt is defined by (4.1).

On the other side, according to (2.6) in the moving system
we have the time vector �v × �r′/c, which disappears in basic

coordinates (�v = 0).

Proof. Notice that if we consider a space rotation P , which
applies to all triples, the system (5.1) remains covariant. In-

deed, �r, �r′, �v,�c, �v × �r′ transform as vectors, t and δt, which is

defined by (4.1), transform as scalars, while cos A and sin A

transform as tensors of rank 2. Hence, if we multiply from

left with

[
P O
O P

]
the both sides of (5.1), we obtain

β

[
P �r′

P�ct′ + (P�v)×(P �r′)
c

]
=

=

[
P cos AP T −P sin AP T

P sin AP T P cos AP T

][
P�r + P�v(t + δt)

P�c(t + δt)

]

and since

P (cos A)P T = cos(PAP T ) and P (sin A)P T = sin(PAP T ),

the covariance of (5.1) is proved. So it is sufficient to apply

such a transformation P which maps vector �v into (v, 0, 0)
and to prove the theorem in this special case.

Notice that both left and right side of (5.1) are linear func-

tions of x, y, z, t, x′, y′, z′, t′, and so after some transforma-

tions it can be simplified. Then the first three equations of
(5.1) reduce to the following three equations respectively

x′ =
x + vt√
1 − v2

c2

, y′ = y, z′ = z.

Further, using these three equations, the fourth equation of

(5.1) reduces to

t′ =
t + vx

c2√
1 − v2

c2

,
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while the 5-th and the 6-th equations are identically satisfied.
�

According to Theorem 3 the well known 4-dimensional

space-time is not fixed in 6 dimensions, but changes with
the direction of velocity. Namely this 4-dimensional space-

time is generated by the basic space vectors and the velocity

vector from the imaginary part of the complex base.

Having in mind the equation (2.6), the Lorentz transfor-
mation (5.1) can be written in the following form

(1 − v2

c2 )
−1/2

[
�rs

�rt

]
=

[
cos A − sin A

sinA cos A

] [
�r + �v(t + δt)

�c(t + δt)

]
.

(5.2)

The coefficient β = (1− v2

c2 )
−1/2 is caused by the active motion

(i). Since the coordinates xs, ys, zs, xt, yt, zt are measured ac-
cording to the basic coordinates x, y, z, we know that all of

them are observed contracted for coefficient
√

1 − v2

c2 so we

needed to multiply them with β = (1− v2

c2 )
−1/2. If we denote

again the same coordinates but now measured from the self

coordinate system, then the Lorentz transformation becomes[
�rs

�rt

]
=

[
cos A − sin A
sinA cos A

] [
�r + �v(t + δt)

�c(t + δt)

]
. (5.3)

Analogous result can be obtained in case if there is simulta-

neously motion with a velocity and space rotation. If there

is also rotation determined by the matrix P ∈ SO(3, R),

then the matrix

[
cos A − sin A

sin A cos A

]
should be replaced by[

P cos A −P sin A
P sin A P cos A

]
.
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6 Cosmology based on the 3+3+3-model

According to (5.3) both vectors

[
�rs

�rt

]
and

[
�r + �v(t + δt)

�c(t + δt)

]
lie

in the same 6-dimensional space. This is true, if the space-
time of the Universe globally is Euclidean space with dimen-

sion 6. But, however, this is not in accordance with the

temporary cosmology. Neglecting the time coordinates, it is
accepted to be a 3-sphere. We shall modify this statement,

by identifying the antipode points of the 3-sphere, and hence

obtaining the projective space RP 3. This space is homeo-

morphic with the Lie group SO(3, R). The local coordinates
of SO(3, R) are angles, i.e. real numbers, but we use length

units for our local space coordinates. So for each small an-

gle ϕ of rotation in a given direction corresponds coordinate

length Rϕ in the same direction, where R is a constant which
can be called radius of the Universe. By accepting this mod-

ification of the spatial part of the Universe, we do not change

anything locally, because the 3-sphere has locally the group
structure of the unit quaternions, and locally this group is

isomorphic with the group SO(3, R). According to this small

modification of the Universe it is now natural to assume that

the space time of the Universe is isomorphic to SO(3, C).
Notice that analogously as (x+ictx, y+icty, z+ictz) is a lo-

cal coordinate neighborhood of SO(3, C), i.e. the space-time

of the Universe, also (1− v2

c2 )
−1/2

(xs + ixt, ys + iyt, xz + izt) is

a coordinate neighborhood of the same manifold. These two
coordinate systems can be considered as coordinate neigh-

borhoods of SO(3, C) as a complex manifold, because ac-

cording to (5.3) the Cauchy-Riemannian conditions for these

two systems are satisfied.
Let us discuss the space-time dimensionality of the Uni-
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verse. We mentioned at the beginning of this section that
the dimensionality is 6 if the space-time is flat. But now

we have that it is parameterized by the following 9 inde-

pendent coordinates: x, y, z coordinates which locally pa-
rameterize the spatial part of the Universe SO(3, R), and

xs, ys, zs, xt, yt, zt coordinates which parameterize the bun-

dle. Dually, the partial derivatives of these coordinates with

respect to x, y, z lead to the same manifold, but now as a
group of transformations. So in any case the total space-time

of the Universe is homeomorphic to SO(3, R)×SO(3, C), i.e.

SO(3, R) × R
3 × SO(3, R). In the above parameterization,

R3 is indeed the space of velocities such that |�v| < c. More-

over, the group SO(3, C) as well as the isomorphic group

O↑
+(1, 3) considers only velocities with magnitude less than

c. If |�v| = c, then we have a singularity.
Notice that if we know the coordinates x, y, z and also

xs, ys, zs, xt, yt, zt, then according to the Lorentz transforma-

tions, the time coordinates cxt, cyt, czt are uniquely deter-
mine. And conversely, if we know the coordinates xs, ys, zs,

and also x, y, z, ctx, cty, ctz, then the time coordinates xt, yt, zt

are uniquely determined. So we can say that there are 6

spatial and 3 temporal coordinates. Notice that if we
consider that the Universe is a set of points, then it is more

natural to consider it as 6-dimensional. But, since we con-

sider the Universe as a set of orthonormal frames, so it is

more natural to consider it as 9-dimensional.
This 9-dimensional space-time has the following property:

From each point of the space-time, each velocity and

each spatial direction of the observer, the Universe
seems to be the same. In other words, there is no priv-

ileged space points (assuming that R is a global constant),

no privileged direction and no privileged velocity. In other
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words, everything is relative.
Finally we can conclude the following. In the (total) space-

time SO(3, R) × SO(3, C), i.e. SO(3, R) × R
3 × SO(3, R)

there are three essential fiber bundles: (i) First case where
the base is the space part of the Universe SO(3, R) and the

fiber is the group of orthogonal transformations SO(3, C),

which consists of all rotations and motions with velocities;

(ii) second case where the base is the set of all spatial rota-
tions SO(3, R), and the fiber is the space-time part of the

Universe SO(3, C); (iii) third case where the base is the time

part of the Universe R
3 and the fiber is the set of space part of

the universe and all space rotations, i.e. SO(3, R)×SO(3, R).

The first and the second fiber bundles are direct products

of the base SO(3, R) and the fiber SO(3, C). The first bun-

dle was studied in many details in the first sections, while
the second bundle was studied mainly in this section, after

the topological structure of the space-time of the Universe

was accepted. Here we want to emphasize that if we want to
consider the fiber over a point B instead of the fiber over a

point A (case (i)), then there is unique matrix P ∈ SO(3, R),

which maps the point A into point B, because both points

A and B are matrices. In this case each matrix M from the
fiber SO(3, C) should be replaced with PMP T . This implies

that each 3-vector of velocity �v should be replaced by P�v and

each space rotation M should be replaced by PMP T . If A

and B are relatively close points in the Universe, then P is
practically unit matrix, and each matrix in the fiber remains

unchanged. This is usually interpreted as translations in flat

space-time as in Minkowski space. This case is close to the
methods of the classical and relativistic mechanics. Indeed,

it is sufficient to study the law of the change of the matrix

M from the fiber, i.e. the matrix which consists the infor-
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mations about the spatial rotation and the velocity vector of
a considered test body. Then it is easy to find the trajectory

of motion of the test body.

Now let us consider the case (ii). Let us choose an ar-
bitrary space rotation. This may be done by arbitrary 3

orthonormal tangent vectors over the Universe considered as

SO(3, R) manifold, and then it can be transfered at each

point of SO(3, R), by using the group structure of SO(3, R).
Then the studying of motion of arbitrary test body means

to find how changes the matrix which gives the position of

the test body in the space and its velocity at the chosen
moment. The space rotation of the test body also changes,

analogously as the position of the test body in case (i) also

changes, but in case (ii) we are not interesting about it. This

is close to the methods of the quantum mechanics, where the
coordinate operators (i.e. space coordinate operators) and

the impulse operators (i.e. the time coordinate operators)

have the main role. If we want to use another space rotation
instead of the chosen one, then there exists a unique matrix

P which maps the initial space rotation into the new space

rotation. In this case each matrix M from the fiber SO(3, C)

should be replaced with PMP T . This implies that each 3-
vector of velocity �v should be replaced by P�v and each space

position, which is given by orthogonal matrix S, should be

replaced by PSP T . Since the radius of the Universe is ex-

tremely large, practically for each space position, the matrix
S for space position is close to the unit matrix, and approx-

imately can be considered as a vector of translation �r, and

now this vector should be replaced by P�r.
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While in the first and the second case the group and the
fiber is simultaneously SO(3, C), in the third case the fiber

and the group of the fiber is SO(3, R) × SO(3, R), which is

given by (X,Y )(X ′, Y ′) = (XX ′, Y Y ′). So, while the time
coordinates are functionally dependnt with the both sets of

spatial coordinates, both sets of spatial coordinates mutually

independent.

The previous discussion can be summarized by the follow-
ing diagram,

V ∼= R
3

× ×
S ∼= SO(3, R) × SR ∼= SO(3, R)

consisting of three 3-dimensional sets: velocity (V) which is

homeomorphic to R
3, space (S) which is homeomorphic to

SO(3, R), and space rotation (SR) which is homeomorphic

to SO(3, R). Each of these three sets can be considered as

base, while the Cartesian product of the other two sets can be
considered simultaneously as a fiber and also a group which

acts over the fiber. The first set is not a group and must be

joined with each of the other two sets, while the other two

sets may exist independently because they are groups.

7 Modification of the Lorentz transformations

By acceptance a priori of the previous assumptions, as a

consequence we do not have any translations and vectors.

So the classical Lorentz transformations have no sense any

more. From this viewpoint, we should modify the Lorentz

transformation defined on a flat space. The vectors

[
�rs

�rt

]
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and

[
�r + �v(t + δt)

�c(t + δt)

]
should be replaced by two matrices and

the Lorentz transformation will become a matrix equality in

the following way. Notice that each small neighborhood of

the unit matrix in SO(3, C) can be parameterized by the
following 6-dimensional vector (x, y, z, x′, y′, z′), i.e. vector

(z1, z2, z3) ∈ C
3, where z1 = x+ ix′, z2 = y + iy′, z3 = z + iz′,

by joining the following matrix in SO(3, C)⎧⎨
⎩

1

Δ

⎡
⎣ 1 + z2

1 − z2
2 − z2

3 −2z3 + 2z1z2 2z2 + 2z1z3

2z3 + 2z1z2 1 − z2
1 + z2

2 − z2
3 −2z1 + 2z2z3

−2z2 + 2z1z3 2z1 + 2z2z3 1 − z2
1 − z2

2 + z2
3

⎤
⎦
⎫⎬
⎭

1/2

,

where Δ = 1 + z2
1 + z2

2 + z2
3. In a special case, if x′ =

y′ = z′ = 0, this matrix represents a spatial rotation in the

direction of (x, y, z) = (z1, z2, z3) and the angle of rotation
is ϕ = arctan

√
x2 + y2 + z2. This representation can be

extended to the following special case, which will be used

later. If x
x′ = y

y′ = z
z′ = v

c
, then the direction of rotation

is (x, y, z) = v
c(x

′, y′, z′) and the complex angle of rotation
satisfies

tanϕ =
√

(x + ix′)2 + (y + iy′)2 + (z + iz′)2 =

=
√

x2 + y2 + z2(1 + i
c

v
).

For example, if �v = (0, 0, v), then the corresponding orthog-

onal matrix is given by⎡
⎣ cos z

R
− sin z

R
0

sin z
R cos z

R 0
0 0 1

⎤
⎦

⎡
⎣ cosh z′

R −i sinh z′
R 0

i sinh z′
R

cosh z′
R

0

0 0 1

⎤
⎦ =

=

⎡
⎣ cosh z′

R
−i sinh z′

R
0

i sinh z′
R cosh z′

R 0
0 0 1

⎤
⎦

⎡
⎣ cos z

R − sin z
R 0

sin z
R

cos z
R

0

0 0 1

⎤
⎦ . (7.1)
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The equality (5.2) now can be represented in the following

way. First note that (5.2) can be written in the following
form

1

R

[
�rs

�rt

]
=

1

R

[
cos A − sin A

sin A cos A

][
�r

0

] √
1 − v2

c2 +

+
1

R

[
�v

�c

]
(t + δt)

√
1 − v2

c2 .

Both vectors 1
R

[
�rs

�rt

]
and 1

R

[
cos A − sin A

sin A cos A

][
�r

0

] √
1 − v2

c2

should be replaced by two matrices M ′ and M from SO(3, C),

while the vector 1
R

[
�v

�c

]
(t + δt)

√
1 − v2

c2 should be replaced

by the following 3 × 3 complex orthogonal matrix

L

⎡
⎢⎢⎣

cos
v(t+δt)

√
1−v2

c2

R
− sin

v(t+δt)
√

1−v2

c2

R
0

sin
v(t+δt)

√
1−v2

c2

R
cos

v(t+δt)
√

1−v2

c2

R
0

0 0 1

⎤
⎥⎥⎦×

×

⎡
⎢⎢⎣

cosh
c(t+δt)

√
1−v2

c2

R
−i sinh

c(t+δt)
√

1−v2

c2

R
0

i sinh
c(t+δt)

√
1−v2

c2

R
cosh

c(t+δt)
√

1−v2

c2

R
0

0 0 1

⎤
⎥⎥⎦ LT ,

which obtains from (7.1) by replacing z = v(t + δt)
√

1 − v2

c2

and z′ = c(t + δt)
√

1 − v2

c2 , and where L ∈ SO(3, R) is ar-

bitrary orthogonal matrix which maps the vector (0, 0, 1)T

into the vector (vx/v, vy/v, vz/v)T . Hence the Lorentz trans-
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formation (5.2) takes the following matrix from

M ′ = ML

⎡
⎢⎢⎣

cos
v(t+δt)

√
1−v2

c2

R − sin
v(t+δt)

√
1−v2

c2

R 0

sin
v(t+δt)

√
1−v2

c2

R
cos

v(t+δt)
√

1−v2

c2

R
0

0 0 1

⎤
⎥⎥⎦×

×

⎡
⎢⎢⎣

cosh
c(t+δt)

√
1−v2

c2

R −i sinh
c(t+δt)

√
1−v2

c2

R 0

i sinh
c(t+δt)

√
1−v2

c2

R
cosh

c(t+δt)
√

1−v2

c2

R
0

0 0 1

⎤
⎥⎥⎦ LT , (7.2)

and now there are no translations. Notice that (7.2) is not

equivalent to (5.2). But neglecting the terms of order R−2

and less, which are extremely small, the equalities (5.2) and

(7.2) are equivalent. However, we accept now that (7.2) is

exact equality, while (5.2) is approximative.
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