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In differential geometry, the Ricci 
flow is a process which deforms 
the metric of a Riemannian 
manifold in a manner formally 
analogous to the diffusion of heat, 
smoothing out irregularities in the 
metric. 
It plays in important role in the 
apparent proof of the Poincare 
conjecture, one of the seven 
Millennium Prize Problems for 
which the Clay Mathematics 
Institute offers a 1,000,000 USD 
prize for a correct solution.
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Poincare conjecture says that :

Every simply connected, closed 3-manifold is 
homeomorphic to the 3-sphere.

G. Perelman

Introduction

In particular, Perelman proved 
Thurston's geometrization
conjecture. This solved in the 
affirmative the Poincaré conjecture,
posed in 1904, which before its 
solution was viewed as one of
the most important and difficult 
open problems in topology.
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Given a Riemannian manifold with metric
tensor gij the Ricci flow may be defined
by the geometric evolution equation :

Where Rij is the Ricci tensor and t the “time”

The normalised version of (1) is 
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Introduction



- Euclidean space, or more generally (Ricci) flat; Ricci
flow has no effect.

- Sphere ; Ricci flow collapses the manifold to a point
in finite time.

- Einstein manifolds (Ricci = constant×metric) ; Ricci 
flow will collapse it to a point if it has positive 
curvature, leave it invariant if it has zero curvature,
and expand it if it has negative curvature.

In particular, this shows that in general the Ricci 
flow cannot be continued for all time, but will 
produce singularities. For a 3 dimensional manifold, 
Perelman showed how to continue past the singu-
larities using surgery on the manifold.

Examples (trivial ones)
Introduction



Introduction

Examples (non-trivial ones)

- Cigar soliton or Witten Black-Hole  having a 
metric
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-This is a stationary solution to the Ricci flow 
(steady soliton)
- Has positive curvature
- Asymptotic to a cylinder
- Curvature decays exponentially
- Is rotationally symmestric



Many versions of the Ricci flow have also 
been studied:
• Various curvature flows defined using either an 
extrinsic curvature, which describes how a curve or 
surface is embedded in a higher dimensional flat 
space, or an intrinsic curvature, which describes 
the internal geometry of some Riemannian 
manifold,
• Various flows which extremalize some quantity 
mathematically analogous to an energy or entropy,
• Various flows controlled by a p.d.e. which is a 
higher order analog of a nonlinear diffusion 
equation….

Introduction



The problem of numerical simulations and 
visualizations with Ricci flow of 2 or 3 dimensional 
manifolds comes naturally as Ricci flow is 
geometric by nature.

Ricci flow acts directly on the metric of the surface, 
tending not to preserve the embeddedness. A 
number of interesting results have been obtained 
by restricting to classes of metrics of revolution, 
since such symmetries are preserved under Ricci 
flow and the metric depends on considerably
fewer parameters in such cases.

These surfaces tend to remain embedded in RRRR3

making direct visualization possible.

Numerical simulations



Since the Ricci flow equations (1) or (2) are only 
weekly parabolic and since numerical evolutions 
appear to be very unstable, we need some solutions 
to avoid this. Mainly there are in the literature two 
solutions (see bellow), namely :
- filtering and reparamatrization method (inspired 
by spectral methods)
- using of other flow equations derived from (1), the 
deTurck flow is such an example.

However an explicit finite-difference scheme for (1) 
is still usable with very small time-steps and high 
number digits precision (several hundred) -
removing short wavelength instabilities.

Numerical simulations



Numerical simulations

The main goal of numerical simulations with Ricci 
flow is to exhibit the formation of singularities 
and/or neck pinching phenomenon, which occurs 
naturally for metrics of revolution.

Numerical simulations in Ricci flow are very similar 
to those in Numerical relativity, thus some methods 
and experience can be… imported here – even 
codes. 

There are not very manny results in this direction 
reported till now. We can mention only two articles, 
namely :
1) Garfinkle & Isenberg - math.DG/0306129 (GI)
2) Rubinstein & Sinclair - math.DH/0406189 (RS)



2-surfaces

A two-dimensional surface of revolution of genus 
zero embedded in R3 can be defined in a polar repre
sentation with coordinates [2,0[, 21 πθρ ∈== xx
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by a metric of the form :

where                 has  the direct physical inter-
pretation as the radius from the axis of rotation. 
For a closed surface, we have

0)( =polem ρ

Choosing ρρρρ =0 at the North Pole and ρρρρ=ππππ at the South 
Pole



2-surfaces

To avoid the numerical instabilities in an implicit 
scheme for (1) and inspired by spectral methods, 
RS introduced a filter which consists of transfor-
ming to Fourier space (DFT), dropping shorter 
wavelength terms, and then transforming back.

Rubnstein and Sinclair used their own code, 
called Ricci_rot (in C) for numerical simulations 
and special codes for vizualisations (in OpenGL)

No convergence and stability analysis was done 
– at least not reported, for the explicit direct 
finite differencing schema used. These produced
several troubles, especialy in the 3D case.



2-surfaces

The Ricci flow forces some parts of a surface to 
contract while others are inflating creating further 
sources of numerical instability. The solution to 
this problem is to reparametrize the metric, the 
most pleasant one let h(ρ) be a constant.

Here are some results reported by RS

Dumbbell shape 2-surface
under Ricci flow –
Reproduced from [1] 
Courtesy of H. Rubinstein



Numerical simulations with Maple

Why using Maple for numerical simulations in Ricci flow ? 

Because  Maple is and integrated platform wich can do symbolic 
computations, numerical computing and vizualisations in the 
same .. worksheet !

Thus we done all the necessary steps for numerical simulations 
in Ricci flow using only Maple, namely :
1) calculations of the differential equations in several cases we

investigated
2) finite differencing of the PDE obtained in the previous step
3) stability and convergence analysis on the FD schema used in
order to establish a Courant factor for stable numerical
evolution

4) analysis of initial data
5) the numerical evolution of the FD equations in question
6) vizualisation of results – even movies !!



Numerical simulations with Maple

Advantages :

-Storing the analytical and numerical results in separate Maple 
libraries, for later use. Example : step (1) above produce the main 
equations stored in libraries loaded later in separate Maple 
worksheets (bisurface_eqs.m is for 2 surfaces of revolution – se 
below)
- as a result steps (2) and (3) or (4) above can be done separately in 
spcial workshhets
-Separately doing the numerical evolution and vizualitation after 
analysis steps
-Everything done under the same language and environment ! 
- Easy to use results for anybody familiar with Maple and not only !

A special mention for the step (1) . Here we used the GrtensorII
package for algebraic computing of the main equations and 
geometrical objects (as the Ricci tensor and scalar). GrTensorII is 
specially designed for differential geometry calculations in 
riemannian geometry



Numerical simulations with Maple

For the 2-surface described earlier (the metric (3)) the Ricci tensor 
has only two non-vanishing components, and the Ricci flow 
corresponding equations are :
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These and other geometrical objects are then stored in a 
Maple library (*.m extension) for later use and load. For the 2 
surfaces these are the main equations we used for numerical 
simulations.



Numerical simulations with Maple

In our investigations we used as initial the function m(ρ(ρ(ρ(ρ)))) as

with appropiate values for the coefficients c3 and c5 controlling 
the shape of the surface - for example for c3 = c5 = 0 the surface 
is a sphere.

For initial value of the h(ρ(ρ(ρ(ρ)))) functions we also used  h0(ρ)(ρ)(ρ)(ρ) = 1.

Before using these initial data, we investigate the behaviour and 
shape of these functions and their derivatives in order to reveal 
some tricky points, if any.
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Numerical simulations with Maple

Thus for c3 = 0.766 and c5 =-
0.0091 we have the shape of 
the m0() function (left panel) 
and of the first main equation 
above with m(ρρρρ,,,, t) replaced 
with m(0) (right panel).

The first and the second 
spatial derivatives of the m0 
function are plotted in 
revealing some turning points 
where we need special care 
with the future numerical
simulations.
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Numerical simulations with Maple

With these established, we composed a Maple program for finite 
differencing the above  equations.

First we denoted the two unknown functions m(ρρρρ,,,, t) and h(ρρρρ,,,, t) whith
two matrices, mm[i,j] and hh[i,j] respectively.

We also denoted the spatial interval between the points on the ρρρρ axis 
with  δδδδ =∆ρ∆ρ∆ρ∆ρ and the time step with dete =∆∆∆∆ t variables.

Separately we denoted also the parts from the two above equations 
containing only spatial derivatives with two matrices, namely eno1[i,j] 
and eno2[i,j] .

For the time derivatives we used the  forward Euler method (it has the 
advantage that one is able to calculate quantities at timestep j + 1 in 
terms of only quantities known at timestep j) and for the spatial 
derivatives we can use a second-order representation still using only 
quantities known at timestep j. 



Numerical simulations with Maple

Thus the “eno” matrices have the shape as :
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Now the time integration of the two finite-differenced equations 
is straitforward as :
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for any time j  > 0 if the initial values for hh[i.0] and mm[i,0]
are provided.



Numerical simulations with Maple

With the above established theoretical steps we proceeded to com-
pose a special Maple program (worksheet) for accomplishing the 
numerical tasks.
First the program starts with the necessary loadings, namely the
library for the bisurface case equations (bisurface eq.m) previously 
saved and then the finite-differences discretization of the main 
equations :

> restart;
> read("bisurface_eqs.m");

> eno1[i,j]:= ((subs(m(rho,t)=mm[i,j],subs(h(rho,t)=hh[i,j], 
subs(diff(m(rho,t),rho)=(mm[i+1,j]-mm[i1,j])/2/delta,
subs(diff(h(rho,t),rho)=(hh[i+1,j]-hh[i-1,j])/2/delta,
(subs(diff(m(rho,t),rho,rho)=(mm[i+1,j]-2*mm[i,j]+

mm[i-1,j])/delta/delta,eco1)))))))):

And similarly for the eno2 object.



Numerical simulations with Maple

The next lines simply  introduce of the initial data  (as the function 
m0(ρ(ρ(ρ(ρ)) and some checkings of it’s values in different points of the 
grid. Then comes the establishing of the grid values, the number of 
the points on the  axis (n), the values of the values for
the c3, c5 constants  and of the spatial interval on the  axis (delta):

> m0(rho):=((sin(rho)+c3*sin(3*rho)+c5*sin(5*rho))/
(1+3*c3+5*c5))**2;

> plot(subs(c3=0.766,c5=-0.091,m0(rho)),rho=0..10);
> n:=50;dete:=0.0018;
> c3:=0.766;c5:=-0.091;delta:=evalf(Pi/n);
> courfac:=dete/delta/delta/2; 

After a series of commands establishing the initial values of main 
matrices, comes the most important part of the program, were we 
integrate the two equations :
> tmax:=80 ; for v from 1 to tmax do; for k from 1 to n-v-1 do
> hhini:=eval(subs(i=k,j=v-1,hh[i,j])); mmini:=eval(subs(i=k,j=v-1,mm[i,j]));
> coco1:=eval(subs(i=k,j=v-1,eno1[i,j]));coco2:=eval(subs(i=k,j=v-1,eno2[i,j]));
> hh[k,v]:=eval(hhini+dete*coco1);
�mm[k,v]:=eval(mmini+dete*coco2);end do:end do:
and this is all, as for the numerical calculations !!!!  Well, almost !



Numerical vizalisations with Maple

The next lines of the program are just a series of plotting 
commands in order to visualise the shape and values ofthe
unknown functions, at all the times processed or atdifferent
times separately.

> for j from 0 to tmax do
> bebe[j]:=plot([[r[p],mm[p,j]]$p=0..n],t) od;
> display(seq(bebe[m],m=0..tmax));
> plot([[r[p],mm[p,0]]$p=0..n],t);
> plot([[r[p],mm[p,1]]$p=0..n],t);.....
�plot([[r[p],mm[p,tmax]]$p=0..n],t);

Here we need plots package and of course the program contains 
similar lines for plotting the values for h(ρ(ρ(ρ(ρ;;;; t)

The rest of the program is mainly dedicated to vizualisations of 
the results, several plottings were done, including some series 
of pictures for animation movies !



Numerical vizalisations with Maple

For more striking wiew of the results we used a separate sequence of 
commands, where we plotted in 3D figures the time evolution of the 
two functions m(ρρρρ:t) and h(ρρρρ:t), namely

> ccc:=[seq([ seq([p,k, evalf(subs(i=p,j=k,mm[i,j]))],
p=tmax+1..n-tmax-1)], k=0..tmax)]: surfdata(ccc,axes=BOXED);
> ddd:=[seq([ seq([p,k, evalf(subs(i=p,j=k,hh[i,j]))],
p=tmax+1..n-tmax-1)], k=0..tmax)]: surfdata(ddd,axes=BOXED);
The time evolution of both functions are plotted as a surface in a 
figure having the time as one of the axes.  Some examples will be 
plotted in the next slides. 

For the stability analysis, we used, in a separate Maple worksheet the 
von Neumann analysis – other methods are also possible. For our case 
of a 2-surface of revolution we established the Courant factor as :
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For both finite differences equations !
Special care also we had for the boundary values where we used 
specific method in every case – this is to be reported elsewhere !



Numerical vizualisations with Maple

Time evolution of the 
� functions m(t) (left) 

and h(t) (right)
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The sphere
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Two folded surface
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Three folded surface
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3-surfaces

For the 3-dimensional surface of revolution we investigated (as RS) 
the metric as

where ρ ≡ x1 plays the role of a latitude and θ ≡ x2 the role of a 
latitude on the abstract Riemannian surface of revolution and K2 is 
a consant. 
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The pinching behavior of this surface under unnormalized Ricci flow (1) 
was studied by Rubinstein and Sinclair starting at t = 0. Also this time an 
explicit finite-differences schema was used. The instabilities forced to 
restrict to fairly large time steps and they were forced to run their code 
only to a restricted (even not at equal times) number of steps. These 
results were called by the authors as “qualittively correct” !!!



3-surfaces in Maple

Using our programs in Maple (as described before) for this type of 
3surfaces we were able, after a von Neumann stability analysis to 
establish a Courant factor and to run properly a number of iterations
(20..30) using the intinial data as :
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and the Ricci scalar (right)
for a 3-surface of revo-
lution under Ricci flow



Corseted sphere surfaces

In their study on a critical behaviour of 3-surfaces under Ricci flow, 
Garfinkle and Isenberg (GI) used a so called corseted sphere 
geometry having :

]sin[sin( 22222222 φθθψψ ddedeeg
WWX ++= −

Here (ψ, θ, φ) are standard angular coordinates on the three sphere. 
The metric functions X and W are functions only of ψ. W = X and X is 
choosed so that :

2/1cos2sinsin4 2224 ≥= ψψψ fore
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Here λ is a constant, which parameterizes the degree of corseting 
for these geometries.



Corseted sphere surfaces

For their numerical investigations, GI used the DeTurck flow, where 
the PDE equations are strong parabolic and a finite differences 
schema for the time evolution and centered finite differences for the 
spatial derivatives. The numerical investigations pointed out a 
critical value for the λ parameter (λ = 0.1639) dividing the behavior 
under the flow into two regimes :
- a subcritical one - for larger λ the flow converges to a round sphere
- a supercritical one - for smaller λ the flow goes to a S2 neck 
pinching singularity
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At the critical value for λ the flow approaches a “javelin” geometry, 
marked by curvature singularities at the poles, with roughly uniform 
curvature between the poles. This javelin geometry corresponds to the 
“type 3” singularity described by Hamilton and discussed by Chow.



Corseted sphere surfaces

The work of Garfinkle and Isenberg is a typical example of how the 
experience in numerical relativity can be applied to Ricci flow 
simulations. The DeTurk “trick” used to make the PDE strongly 
parabolic is similar to the ADM-BSSN version of numerical relativty.

In spite of this, we still think that the use of initial Ricci flow 
equations (normalised or not) can be used, as the explicit finite 
differences schema can be done stable – a Courant factor in certain 
conditions  is possible to exhibit for this schema – as we proved using 
our Maple programs. This is similar to the “pure” ADM method in NR. 
We will developp this idea in our next investigations.

But this is an open question from now one, and the results will be 
reported elsewhere… I hope !
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