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1 Introduction
The development of Quantum Field Theory and the raise of the Standard Model remains as one of
the most fascinating adventures of fundamental science of the twenties century. Indeed, despite the
seemingly great difference between the strength, action range and the different role played in the birth
and the evolution of our universe by the electromagnetic, weak and strong interactions, we know that
all three interactions are based on the gauge principle, which seems to be a fundamental principle of
nature. Amazingly enough, gauge theories with or without spontaneous symmetry breaking are also
renormalizable, in the leading expansion in the dimension of operators in quantum field theory. There
is nothing inconsistent from the modern perspective in non-renormalizable theories, the prominent and
most important example of this type being Einstein gravity. However, renormalizability renders a theory
highly predictive up to high energy scales. This allowed highly precise tests of quantum electrodynamics
(QED) like for example the computation of the electron anomalous magnetic moment or the running
with the energy of the fine-structure constant. That’s why we can talk today about the precision tests
of the Standard Model, possible deviations from it, if found experimentally, having to be interpreted
unambiguously as signatures of new physics.

These lectures contain an introduction to the basic features of quantum field theory and the elec-
troweak sector of the Standard Model. They are organized as follows. Section 2 introduces symmetries
and the Noether theorem. Section 3 introduces perturbation theory, first time-dependent perturbation
theory in quantum mechanics, followed by perturbation theory in quantum field theory. Section 4 is
an introduction to abelian and non-abelian gauge theories and elements of their quantization. Section
5 describes spontaneous symmetry breaking, Goldstone theorem and the Higgs mechanism. Section 6
introduces the classical aspects of the electroweak sector of the standard sector. Section 7 discusses renor-
malizability and examples of energy evolution of couplings in the φ4 scalar theory and QED. Section 8
contains some simple applications and constraints coming from global and gauge anomalies. Section 9
enters into the Higgs physics and some theoretical arguments in favor of a light Higgs boson. As well
known, Higgs searches are presently the main goal of the Large Hadron Collider (LHC) at CERN. (Very)
preliminary LHC results seem to validate the theoretical picture pioneered long-time ago by Higgs and
by Brout-Englert [1] and the more recent theoretical arguments pointing in favor of a light scalar Higgs
boson. We end up with brief standard arguments in favor of the Standard Model as an effective theory,
to be completed beyond some unknown energy scale with an underlying microscopic theory.

2 Fields, Symmetries and the Noether theorem.
Symmetries are fundamental in our understanding in nature. Classic examples are:
- Continuous spacetime symmetries, for example space rotations.
- Discrete symmetries are fundamental in classification and properties of crystals.
- Continuous and discrete internal symmetries in particle physics.
Ex. the eightfold way : Flavor SU(3)f , used by M. Gell-Mann in his famous classification of hadrons
which also led to the introduction of color as a new quantum number and to the modern theory of strong
interactions, the QCD.
The importance of symmetries in nature is to a large extent due to the Noether theorem :
To any continuous symmetry of a physical system, it corresponds a conserved current and an associate
conserved charge.
Examples of conserved charges associated to continuous symmetries are :

Symmetry Conserved charge

Time translation Energy

Space translation Momentum

Rotations Angular momentum

Phase rotations wave function Electric charge
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Fig. 1: The flavor SU(3)f baryon octet. From [2].

For the case of internal symmetries which are our primary goal here, the proof of the Noether theorem
goes as follows. Consider a field theory with φ denoting collectively all the fields of the theory, of
lagrangian L(φ, ∂mφ). The field transformations generated by infinitesimal parameters αa

δφ = αa(x)T aφ , (1)

lead to a new lagrangian
L(φ, ∂mφ)→ L̂(φ, αa, ∂mφ, ∂mαa) . (2)

The variation of the action functional S(φ, ∂mφ) under field variations (1) is

δS =

∫
d4x

[
∂L̂
∂αa

αa +
∂L̂

∂(∂mαa)
∂mαa

]

=

∫
d4x

[
∂L̂
∂αa

− ∂m
∂L̂

∂(∂mαa)

]
αa , (3)

where to get the result in the last line we performed an integration by parts. By defining the currents

Jma =
∂L̂

∂(∂mαa)
, (4)

we find that the variation of the action (3) vanishes if

∂mJ
m
a =

∂L̂
∂αa

. (5)

In the particular case where the field variation is a symmetry of the lagrangian, we immediately find the
conservation law

∂mJ
m
a = 0 ⇒ dQa

dt
=

∫
d3x ∂mJ

m
a = 0 ,

where Qa =

∫
d3x J0

a (6)

is a conserved charge. In the quantum theory, the charge Qa is promoted to an operator that generates
transformations on the fields

δφ = iαa [Qa, φ]. (7)
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It is straightforward and is left to the reader as an exercise to show that the conserved current can also be
computed according to the following formulae

δL̂ = Jma ∂mαa , or

Jma =
∂L

∂(∂mφ)

δφ

δαa
. (8)

Through the Noether theorem, continuous symmetries lead to conserved charges that are manifest in the
spectrum and interactions. As known already from quantum mechanics2 their study greatly simplifies
the dynamics.
As we will see later on, the local (space-time dependent) symmetries determine the structure of all the
fundamental interactions in nature ! Indeed, all four fundamental interactions, the electromagnetism,
the weak and strong forces and (in a somewhat different way) the gravitational one can be found as
consequences of local symmetries called gauge symmetries. The simplest and most important example
is maybe the conservation of the electric charge. Applied to the case of a fermion (containing say the
electron) Ψ, of lagrangian written explicitly later on in (78) , the symmetry under consideration is simply
the phase transformation

Ψ→ eiαΨ , δΨ = iαΨ , (9)

which leads to the Noether current and the conserved charge

Jm = Ψ̄γmΨ , Q =

∫
d3x Ψ̄γ0Ψ =

∫
d3x Ψ†Ψ , (10)

where Jm is the electromagnetic current of the fermion and Q the electric charge, which becomes an
operator in the quantum theory.

In the case of spacetime symmetries, the lagrangian is not really invariant, but it transforms into a
total derivative

δL = ∂m(Km
a αa) . (11)

In this case, the current derived before changes into

Jma =
∂L

∂(∂mφ)

δφ

δαa
−Km

a . (12)

Let us consider as an example spacetime translation acting on a Lorentz scalar

x′m = xm + am , φ′(x′) = φ(x) . (13)

At the linear order in am, both the scalar and the lagrangian, being Lorentz scalars, transform in the same
way

δφ ≡ φ′(x)− φ(x) = −am∂mφ , δL = −am∂mL . (14)

In this case therefore, the corresponding conserved charge is

Jm = − ∂L
∂(∂mφ)

an∂nφ+ amL ≡ −anTmn , (15)

where
Tmn =

∂L
∂(∂mφ)

∂nφ− ηmnL (16)

is the energy-momentum tensor. Noether theorem ensures its the conservation and the existence of the
conserved charge

∂mT
mn = 0 , Pm =

∫
d3x T 0m , (17)

where the conserved charge Pm = (E,P) contains the energy and the total momentum, which are the
generators of spacetime translations.

2For example the conservation of angular momentum greatly simplifies the study of hydrogen atom.
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3 Quantization and perturbation theory.
The second quantization of fields and perturbation theory lead to precise formulae for scattering am-
plitudes which led to the Feynman diagrams, that are crucial for computing cross sections and other
physical observables. The appropriate formalism uses the Heisenberg or interaction picture in quantum
mechanics, that we first review, before introducing the corresponding quantum field theory formalism.

3.1 Time-dependent perturbation theory in quantum mechanics.
Let’s start from Schrodinger versus interaction/Heisenberg picture in Quantum Mechanics.

H = H0 + Hint (18)

where H0 is the free hamiltonian and Hint is the interaction.
The Schrodinger equation is

i
d |ΨS(t)〉

dt
= (H0 + Hint) |ΨS(t)〉 (19)

time dep. ↗ ↖ time-indep. operators.
In the interaction (or Heisenberg) picture

|ΨI(t)〉 = eiH0t |ΨS(t)〉 , Hint(t) = eiH0t Hint(t) e
−iH0t (20)

the Schrodinger eq. becomes (Exercise:)

i
d |ΨI(t)〉

dt
= Hint(t) |ΨI(t)〉 (21)

We define the evolution operator U(t, ti) by

|ΨI(t)〉 = U(t, ti)|ΨI(ti)〉 , U(ti, ti) = 1 (22)

Ex: Check that U satisfies the eq.

i
∂U(t, ti)

∂t
= Hint(t) U(t, ti) (23)

It can be shown that (Ex:)
U(t, ti) = T e

−i
∫ t
ti
dt′Hint(t′) (24)

where the time-ordered product of the operators A and B is defined as

TA(t1)B(t2) = θ(t1 − t2) A(t1)B(t2) + θ(t2 − t1) B(t2)A(t1) (25)

The S-matrix is defined as

S = lim
t→∞,ti→−∞

U(t, ti) = T e−i
∫
dtHint(t) (26)

The states in the far past, before the interaction process are free wave packets and are denoted by
| p1 · · · pn, in 〉, where pi are the momenta of the incident particles. Similarly, the states in the far
future, after the interaction process are again free and are denoted by | p′1 · · · p′m, out 〉, where p′i are the
momenta of the scattered particles. The transition amplitudes passing from the initial to the final state is

Sif = 〈Ψf |S|Ψi〉 = 〈p′1 · · · p′m, in| S |p1 · · · pn, in〉
= 〈p′1 · · · p′m, out | p1 · · · pn, in 〉 = no interaction term

+ i (2π)4 δ4(
m∑
j=1

p′j −
n∑
i=1

pi) Aif (27)

The Feynman rules are usually given for the matrix Aif .
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Fig. 2: Scattering amplitude of n initial particles and m final particles. The amplitude of the process is denoted
Sif = 〈p′1 · · · p′m, out | p1 · · · pn, in 〉

3.2 Quantization of the scalar theory.
Canonical quantization in Quantum field theory uses the Heisenberg (interactive) picture. Let us consider
for illustration a scalar theory

L =
1

2
(∂φ)2 − m2

2
φ2 − λ

4!
φ4 =

1

2
φ̇2 − 1

2
(∇φ)2 − m2

2
φ2 − λ

4!
φ4

= L0 + Lint , where Lint = − λ

4!
φ4 (28)

The metric convention throughout these lectures will be ηmn = diag(1,−1,−1,−1). The conjugate
momentum is π = ∂L

∂φ̇
= φ̇ and the hamiltonian

H =

∫
d3x

[
φ̇
∂L
∂φ̇
− L

]
=

∫
d3x

[
1

2
φ̇2 +

1

2
(∇φ)2 +

m2

2
φ2 +

λ

4!
φ4

]
= H0 +Hint , where (29){

H0 =
∫
d3x

[
1
2 φ̇

2 + 1
2(∇φ)2 + m2

2 φ
2
]

Hint =
∫
d3x λ

4!φ
4

(30)

Field eqs. called the Klein-Gordon equation and the solutions for the free-field theory are :

(�+m2) φ(x) = 0 ⇒

φ(x) =

∫
d3k

(2π)3/2
√

2ωk

(
eikx a†k + e−ikx ak

)
(31)

where k0 = ωk =
√

k2 +m2. The solution φ(x) is the operator in the Heisenberg picture. Quantization
proceeds as usual:

[ak, a
†
k′ ] = δ3(k− k′) → [φ(t,x, π(t,y)] = iδ3(x− y) (32)

The one-particle states are defined by

|k〉 = a†k|0〉 ⇒ 〈k′|k〉 = δ3(k− k′) (33)

and the energy/hamiltonian is

H0 =

∫
d3k ωk (a†kak +

1

2
) (34)

8



is one of a collection of quantum oscillators. Therefore (there is by definition no interaction in the
asymptotic past and future) {

|ψi〉 = |p1p2 · · · pn〉 = a†p1 · · · a
†
pn |0〉

|ψf 〉 = |p′1p′2 · · · p′m〉 = a†
p′1
· · · a†p′m |0〉

(35)

3.3 Evolution operator and S-matrix in quantum field theory.
Starting from the scalar field, one can define the free fields before and after the interaction

lim
t→−∞

φ(x) = Z1/2φin(x) , lim
t→+∞

φ(x) = Z1/2φout(x) . (36)

The factors Z in (36) are wave-function normalizations that take into account the possible mismatch in
normalization between the (out)ingoing field and the free-field satisfying canonical commutation rela-
tions. We define the evolution operator by

φ(x) = U−1(t) φin(x)U(t) , (37)

where U(t) = U(t,−∞), φin is the incoming (free) field and φ is the interacting field. Since φin and
φout are free-fields, they generate the same Fock space of states. There should therefore be an unitary
operator, the S-matrix, which relates the operators according to

φout(x) = S−1φin(x)S , (38)

and the corresponding states in the Fock space according to

|out〉 = S−1 |in〉 = S† |in〉 ,
|in〉 = S |out〉 . (39)

Clearly the S-matrix is the infinite-time limit of the evolution operator

S = lim
t→∞

U(t) . (40)

As in quantum mechanics, we separate the interaction from the free hamiltonian

H = H0 + Hint(t) . (41)

The evolution eqs. for the quantum fields are

∂φ(x)

∂t
= i [H(φ), φ(x)] ,

∂φinφ(x)

∂t
= i [H0(φin), φin(x)] . (42)

By combining (37) and (42), we obtain the eq. satisfied by the evolution operator

i
dU

dt
= (H(φin)−H0(φin)) U = HI(t) U , (43)

where HI(t) = Hint(φin, πin). It is easy to check that the evolution operator satisfies the integral eq.

U(t) = I − i

∫ t

−∞
dt1 HI(t1) U(t1) . (44)

This eq. can be solved by iteration. It can be shown term by term in the expansion in the interaction that
the solution of (44) can be written in the compact elegant form

U(t) = T e−i
∫ t
−∞ dt′HI(t′) . (45)

Consequently, the S-matrix is given by

S = lim
t→∞

U(t) = T e−i
∫∞
−∞ dt′HI(t′) = T ei

∫
d4xLI . (46)

Whereas at first sight, the last equality is true only in the absence of derivative interactions HI = −LI ,
it is actually true in general.
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3.4 Cross sections and decay rates
Consider a bunch of particles of type A colliding a target of particles of type B and denote the cross-
sectional area common to both bunches by A. If NA (NB) denotes the total number of particles A (B) in
the bunches, then the interaction cross-section is defined as the ratio

σ =
Nb. events×A

NANB
. (47)

For of an unstable particle A, its decay rate is defined as

ΓA =
Nb. decays per unit time

NA
. (48)

The matrix element of the interaction part of the S-matrix S = 1 + iA defines the invariant matrix
element

〈p1 · · · pn, in| iA | q1 · · · ql, in 〉 = (2π)4δ4(
∑
k

pk −
∑
r

qr) iM(q1 · · · ql → p1 · · · pn) . (49)

The asymptotic states should be constructed in terms of normalized wave packets. For scalars for exam-
ple they are positive energy solutions ϕ̃(x) of the Klein-Gordon equation. A two-particle incoming state
can then be written

|i, in〉 =

∫
d3p1

(2π)3

1

2E1

d3p2

(2π)3

1

2E2
ϕ1(p1)ϕ2(p2)|p1, p2〉 , (50)

where ϕ(p) is the momentum-space Fourier transform

ϕ̃(x) =

∫
d3p

(2π)3

1

2E
ϕ(p) . (51)

The flux of particles in the beam is given by

i

∫
d3xϕ̃∗(x)∂↔t ϕ̃ =

∫
d3p

(2π)3

1

2E
|ϕ(p)|2 . (52)

The differential cross section two a scattering of two particles into an arbitrary number of final particles
A+B → p1 · · · pn is

dσ =
1

4EAEB|vA − vB|

∏
f

d3pf
(2π)3

1

2Ef

 |M(qAqB → p1 · · · pn)|2(2π)4δ4(qA + qB −
∑
f

pf ) ,

(53)
where vA, vB are the speed of the particlesA,B and |vA−vB| is the relative velocity of the two colliding
particles in the laboratory frame. The decay rate of an unstable particle A is given by a similar formula

dΓ =
1

2mA

∏
f

d3pf
(2π)3

1

2Ef

 |M(mA → p1 · · · pn)|2(2π)4δ4(qA −
∑
f

pf ) . (54)

The amplitude of a proces with a virtual exchange of an unstable particle of momentum p is given by a
relativistic extension of the Breit-Wigner formula

M ∼ 1

p2 −m2 + imΓ
, (55)

where Γ is the total decay width of the particle. The Breit-Wigner formula correctly transform the
infinite peak on the mass shell p2 = m2 into a gaussian bump and is crucial in order to correctly interpret
a resonance in experimental data.
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3.5 Reduction formula, perturbation theory and Feynman diagrams.
Feynman rules and perturbation theory follow from the expansion in powers of the interaction of S-
matrix elements

〈p1 · · · pn, in| S | q1 · · · ql, in 〉 = 〈0|ap′m · · · ap′1 T e
i
∫
d4xLint(x)a†p1

· · · a†pn
|0〉 . (56)

A very important formula in S-matrix perturbation theory is the reduction or the LSZ (Lehmann-Symanzik-
Zimmermann) formula, which relates S-matrix elements to the time-ordered Green functions

〈p1 · · · pn, out| q1 · · · ql, in〉 = 〈p1 · · · pn, in| S | q1 · · · ql, in 〉
= disconnected terms + (iZ−1/2)n+l × (57)

×
∫
d4y1 · · · d4xl e

i(
∑
k pkyk−

∑
r qrxr) (�y1 +m2) · · · (�x1 +m2)〈0| Tφ(y1) · · ·φ(xl) |0〉

where Z is the wave-function renormalization for the scalar field. The asymptotic Fock space defines
unambigously the vacuum state

|0, in〉 = |0, out〉 = |0〉 (58)

The central figures in perturbation theory are therefore the Green functions

G(n)(x1 · · ·xn) = 〈0| Tφ(y1) · · ·φ(xn) |0〉 (59)

The Green functions of the interactive field φ can be expressed in terms of Green functions of the free-
field φin via the crucial formula (see for ex. [3, 52])

G(n)(x1 · · ·xn) =
〈0| Tφin(x1) · · ·φin(xn) ei

∫
d4xLint[φin] |0〉

〈0| T ei
∫
d4xLint[φin] |0〉

. (60)

Green functions can be elegantly captured by a generating functional, defined by coupling the scalar to
an external source J(x), by changing the lagrangian L → L+ Jφ. In this case

Z(J) = eiW (J) = 〈0|Tei
∫
d4x φ(x)J(x)|0〉 . (61)

It can be shown that

G(n)(x1 · · ·xn) =
1

in
δnW (J)

δJ(x1) · · · δJ(xn)
|J=0 (62)

are connected Green functions, generated therefore by the generating functional W (J). Conversely, W
can be expanded in a power series

W (J) =
∑
n

1

n!

∫
d4x1 · · · d4xn G

(n)(x1 · · ·xn)J(x1) · · · J(xn) . (63)

Another important notion is normal ordering. A normal ordered operator : O : is defined such that all
creation operators are on the left and all annihilation operators are on the right. By construction then its
vev vanishes 〈: O :〉 = 0. G. Wick found an elegant way to express free-field Green functions in terms
of normal-ordered products, by the so-called Wick theorem. The simplest example is the two-point
function

Tφin(x)φin(y) = : φin(x)φin(y) : + DF (x− y) , (64)

where DF (x− y) is the Feynman propagator. An explicit computation gives

DF (x− y) =

∫
d3k

(2π)32ωk
{θ(x0 − y0) e−ik(x−y) + θ(y0 − x0) eik(x−y)}
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=

∫
d4k

(2π)4

i

k2 −m2 + iε
e−ik(x−y) . (65)

The iε prescription in the Feynman propagator has the property of propagating the positive frequencies
into the future and the negative frequencies into the past. This is precisely what will be needed later on
in order to capture both particles and antiparticles propagation in a causal way. Wick theorem can be
generalized to a time-ordered product of an arbitrary number of fields

Tφin(x1)φin(x2) · · ·φin(xn) = : φin(x1)φin(x2) · · ·φin(xn) : + all possible contractions . (66)

Let us now discuss the Feynman diagrams for the simplest φ4 theory, with

Lint = − λ
4!
φ4 . (67)

The Feynman rules are usually formulated in the momentum space :

G(p1 · · · pn) =

∫
d4x1 · · · d4xn e

i
∑
i pixi G(x1 · · ·xn) . (68)

Applying perturbation theory (57), we obtain the following Feynman rules :

• associate to each propagator the factor i
p2−m2+iε

.

• to each vertex the factor −iλ.

• impose momentum conservation at each vertex.

• integrate over undetermined internal momenta k,
∫

d4k
(2π)4

.

• each diagram is to be divided by a symmetry factor, equal to the number of ways of interchanging
components without changing the diagram.

• sum the contributions of all topologically distinct connected diagrams.

It can also be shown from (57) that the denominator cancels precisely all non-connected diagrams
in the Feynman diagrams of the Green functions.

Perturbation theory is now one of the cornerstones of QFT. The anomalous magnetic moment of
the electron was computed for the first time by Schwinger at one-loop in 1948 [13] (the factor below, α

2π ,
is engraved on Schwinger’s tombstone). Today it is known up to four-loops !

ae =
ge − 2

2
=

α

2π
+ · · ·

aexp
e = (1159652185.9± 3.8)× 10−12 ,

ath
e = (1159652175.9± 8.5)× 10−12 , (69)

where ge is the gyromagnetic factor of electron coupling to a magnetic field. The theoretical prediction
agrees with the experimental measurements in (69) up to the eight digit ! There are however still mys-
teries in perturbation theory. For example, for the muon magnetic moment, the measured value at BNL
disagrees by 3.4 σ from the theoretical SM calculation

ath
µ = aQED

µ + aEW
µ + ahad

µ

aexp
µ ' 0, 00116592089

In this case, it is likely that the hadronic contribution is not known accurately enough, since the muon
mass is much closer to the hadronic contributions compared to the electron one. This is a very hot
research topic nowdays, since any real disagreement could be a hint for new physics contributions coming
from virtual loops of new particles.
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Fig. 3: Simplest Feynman diagrams contributions to the electron magnetic moment. The agreement between
perturbative QED computations and the experimentally measured value agree up to the eight digit.

3.6 Ward identities and low energy theorems
Let us consider a current

Jm =
δL

δ(∂mφ)
δφ , (70)

where the field transformation is generated by the Noether charge associated to the current J

δφ(x) = i[Q,φ(x)] . (71)

Let’s furthermore consider the possibility that the current is conserved or not

∂mJm(x) ≡ ∆(z) . (72)

As shown in the previous sections, the relevant objects in perturbation theory are time-ordered correlation
functions of the quantum fields. In this case, it is straightforward to prove the following equality, called
the Ward identity

∂

∂zm
〈0|TJm(z)φ(x1)φ(x2) · · ·φ(xn)|0〉 = 〈0|T∆(z)φ(x1)φ(x2) · · ·φ(xn)|0〉

−iδ4(z − x1)〈0|Tδφ(x1)φ(x2) · · ·φ(xn)|0〉 − iδ4(z − x2)〈0|Tφ(x1)δφ(x2) · · ·φ(xn)|0〉 − · · · .(73)

If one takes the Fourier transform of (73), one gets

ikm

∫
d4z e−ikz〈0|TJm(z)φ(x1)φ(x2) · · ·φ(xn)|0〉 =

∫
d4z e−ikz〈0|T∆(z)φ(x1)φ(x2) · · ·φ(xn)|0〉

−ie−ikx1〈0|Tδφ(x1)φ(x2) · · ·φ(xn)|0〉 − ie−ikx2〈0|Tφ(x1)δφ(x2) · · ·φ(xn)|0〉 − · · · . (74)

In the zero-momentum limit limit one gets∫
d4z 〈0|T∆(z)φ(x1)φ(x2) · · ·φ(xn)|0〉 =

i 〈0|Tδφ(x1)φ(x2) · · ·φ(xn)|0〉+ i 〈0|Tφ(x1)δφ(x2) · · ·φ(xn)|0〉+ · · ·
= i δ 〈0|Tφ(x1)φ(x2) · · ·φ(xn)|0〉 . (75)

Such relations are called low-energy theorems.
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3.7 Fermions and the quantization of the Dirac field
Relativistic fermions satisfying the Pauli principle are described by spinors in quantum field theory. In
particular, the relativistic spin 1/2 fermion is described by a four component spinor Ψ via the Dirac
equation

(iγm∂m −M)Ψ = 0 , (76)

where γm are the 4× 4 Dirac matrices satisfying the Clifford algebra

{γm, γn} = 2ηmn . (77)

The Lagrangian giving the Dirac equation is

L0 = Ψ̄(iγm∂m −M)Ψ , (78)

where Ψ̄ = Ψ†γ0. A particular role is played by fermions which are eigenstates of the chirality operator,
satisfying

γ5 = iγ0γ1γ2γ3 , (γ5)2 = 1 ,

{γm, γ5} = 0. (79)

It is then possible to define left and right-handed chirality fermions

γ5ΨL = −ΨL , ΨL =
1− γ5

2
Ψ ,

γ5ΨR = ΨR , ΨR =
1 + γ5

2
Ψ . (80)

In terms of the left/right chirality fermions, the Dirac lagrangian is written

L0 = Ψ̄Liγ
m∂mΨL + Ψ̄Riγ

m∂mΨR −M(Ψ̄LΨR + Ψ̄RΨL) , (81)

whereas the Dirac equation can be split into two equations

iγm∂mΨL −MΨR = 0 , iγm∂mΨR −MΨL = 0 . (82)

A particularly convenient basis for gamma matrices, when dealing with chiral fermions, is the chiral
representation, for which

γi =

(
0 τ i

−τ i 0

)
, γ0 =

(
0 1
1 0

)
,

γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
, C =

(
iσ2 0
0 −iσ2

)
, (83)

where C is the charge conjugation matrix satisfying

C−1 γm C = − γTm , C = −C−1 = −CT = −C† (84)

The Dirac lagrangian and Dirac equation have two different type of symmetries, a vector symmetry of
parameter α and an axial-symmetry of parameter β

vector : ΨL → eiαΨL , ΨR → eiαΨR ,

axial : ΨL → eiβΨL , ΨR → e−iβΨR . (85)

The axial transformation can also be written in the form

ΨR → eiβγ5ΨR (86)
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Whereas the vector symmetry is exact for any value of the mass M and through Noether theorem is
responsible for the charge conservation, the axial symmetry is broken by the mass term and is therefore
exact clasically only in the massless limit. As we will see in Section 6, in Nature left and right chirality
fermions have different interactions. This is related to the parity violation in the weak interactions and it
is at the heart of the construction of the Standard Model.
There are two different type of fermions that could exist in nature. The fermions charged under gauge
symmetries are of Dirac type, i.e. their mass (eventually after symmetry breaking, as it will be the case
in the Standard Model) is of Dirac type (81). For fermions uncharged under gauge symmetries, they can
be of Majorana type. In this case, the charge conjugate fermion

Ψc = CΨ̄T , (87)

is self-conjugate Ψc = Ψ, i.e. the fermion is its own antiparticle. In this case, the mass of the fermion
can be written as

LM = −M
2

ΨTCΨ + h.c. . (88)

It is not yet known if there exist Majorana fermions in nature. One natural possibility are the neutrinos.

According to perturbation theory, we start from the free Dirac lagrangian

L0 = Ψ̄(iγm∂m −M)Ψ . (89)

Conjugate momentum is π = ∂L
∂Ψ̇

= iΨ†. The free-field hamiltonian is then

H0 =

∫
d3x Ψ̄(iγ∇+M)Ψ =

∫
d3x Ψ†(iα∇+ βM)Ψ , (90)

where γ = βα, γ0 = β and in the last paranthesis we can recognize the Dirac hamiltonian of relativistic
quantum mechanics. The solutions of the Dirac equation (89) are of the form

Ψ(x) =

∫
d3k

(2π)3/2
√

2ωk

∑
s=1,2

[
e−ikx ask u

s(k) + eikx bs,†k vs(k)
]
, (91)

where us(k) (vs(k)) are positive (negative) frequency solutions of the Dirac eq.

(γmkm −M) us(k) = 0 , (γmkm +M) vs(k) = 0 . (92)

The Dirac eq. have two independent solutions s = 1, 2. The correct quantization for fermions uses
anti-commutators

{Ψα(t,x),Ψ†β(t,y)} = δαβ δ
3(x− y) , (93)

all the other anticommutators being zero. This defines the anticomutation relations

{arp, as,†q } = {brp, bs,†q } = δrsδ3(p− q) . (94)

The vacuum is defined by arp|0 >= brp|0 >= 0, whereas the hamiltonian is given by

H0 =

∫
d3k

∑
s

ωk

[
as,†k ask + bs,†k bsk

]
. (95)

Notice that if the theory would have been quantized with commutators, the contribution of the b oscilla-
tors would have been of opposite sign and the hamiltonian would have been unbounded from below. The
electric charge operator can be defined as in (120) and equals

Q =

∫
d3k

∑
s

[
as,†k ask − bs,†k bsk

]
. (96)
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By defining also the helicity operator, it can shown that:
- as,†k creates fermions of energy ωk, momentum k, electric charge +1 (in units of the electron electric
charge), helicity left (right) for s = 1 (s = 2).
- bs,†k creates antifermions of energy ωk, momentum k, electric charge −1 and helicity right (left) for
s = 1 (s = 2).
Similarly for the scalars case, there is a reduction/LSZ formula (56) and perturbative expansion (57)
for the Green functions. The simplest and most important Green function is the fermionic Feynman
propagator

SF (x− y) = 〈0| TΨ(x)Ψ̄(y) |0〉 = θ(x0 − y0)〈0|Ψ(x)Ψ̄(y)|0〉 (97)

−θ(y0 − x0)〈0|Ψ̄(y)Ψ(x)|0〉 =

∫
d4k

(2π)4

i(γmkm +M)

k2 −m2 + iε
e−ik(x−y) .

3.8 Quantization of the electromagnetic field
The quantization of the free electromagnetic field is subtler than for the case of scalars and fermions.
Indeed, starting from the Maxwell lagrangian

L = − 1

4
FmnF

mn , (98)

the conjugate momentum is

πm =
∂L
∂Ȧm

= Fm0 ⇒ π0 = 0 (99)

and we cannot impose canonical commutation relations. The problem can be avoided by using the non-
covariant gauges, like the Coulomb gauge (divA = 0), but it is preferable to maintain manifest Lorentz
covariance. The standard option is to modify the lagrangian by adding a gauge-fixing term and changing
the lagrangian to

L = − 1

4
FmnF

mn − 1

2ξ
(∂mA

m)2 , (100)

where ξ is a real arbitrary (and unphysical) parameter. In this case the field eqs. become

�Am − (1− 1

ξ
)∂m(∂A) = 0 (101)

and the canonical momentum π0 = −1
ξ (∂mA

m) does not vanishes anymore. The propagator of the
photon including the gauge fixing is found by inverting the quadratic part of the lagrangian (101)

L =
1

2
Am

[
ηmn�− (1− 1

ξ
)∂m∂n

]
An . (102)

The result is

∆mn = −i
ηmn − (1− ξ)kmkn

k2

k2 + iε
. (103)

The commonly used gauges in Feynman diagram computations are ξ = 0 (Landau gauge) and ξ = 1 (
Feynman gauge).

Observation: Field eqs. imply � (∂A) = 0, which suggests that we could impose the Lorentz
condition ∂A = 0. This is however incompatible with canonical quantization, since π0 ∼ ∂A. The
condition can be only be imposed on physical states |ψph〉

〈ψph|∂mAm|ψph〉 = 0 . (104)
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Fig. 4: The four fundamental interactions in nature. From [14].

It can be shown that physical results are independent of ξ. A convenient choice for canonical quantization
is ξ = 1 (Feynman gauge), in which case the electromagnetic field become a collection of four Klein-
Gordon fields �Am = 0. In this case, it can be expanded in plane waves according to

Am(x) =

∫
d3k

(2π)3/2
√

2ωk

3∑
r=0

[
e−ikx ark ε

r
m(k) + eikx ar,†k ε̄rm(k)

]
, (105)

where here ωk = |k| = k0 and εrm(k) are the polarization vectors. Canonical quantization in this case
goes as follows

[Am(t,x), πn(t,y)] = −iηmnδ3(x− y) ⇒ [Am(t,x), Ȧn(t,y)] = −iηmnδ3(x− y) . (106)

The commutation relations for the creation/annihilation operators then follow

[ark, a
s,†
q ] = −ηrs δ3(k− q) . (107)

Finally, the Feynman propagator in this gauge is

〈0|TAm(x)An(y)|0〉 = − ηmnDF (x− y)|M=0 = −iηmn
∫

d4k

(2π)4

e−ik(x−y)

k2 + iε
. (108)

4 Gauge theories.
The four fundamental interactions in nature have a common feature: they are gauge interactions. We will
discuss here the internal symmetries which describe the electromagnetic, weak and strong interactions
and elements of their quantization.

4.1 Gauge invariance of Schrödinger eq.
The simplest example of gauge symmetry arises in the description of particle of mass m and charge q in
quantum mechanics. The hamiltonian is

H =
1

2m
(p− qA)2 + qV , (109)

where the vector A and the scalar V potential are related to the electric/magnetic fields via

E = −∇V − ∂A

∂t
, B = ∇×A . (110)
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The Maxwell eqs. are invariant under the gauge transformations

A′ = A +∇α , V ′ = V − ∂α

∂t
. (111)

The Schrödinger eq. is covariant, with H = H(A, V ), H ′ = H(A′, V ′)

i~
∂Ψ

∂t
= HΨ → i~

∂Ψ′

∂t
= H ′Ψ′ (112)

if under the gauge transformations (109), the wave function transforms as

Ψ′(r, t) = e
iqα
~ Ψ(r, t) . (113)

• Notice that the mean value of any physically measurable quantity is gauge invariant; for ex. P (r) =
|Ψ|2 = |Ψ′|2.
Homework: Defining the velocity operator
v = 1

m(p− qA) , check that 〈Ψ|v|Ψ〉 = 〈Ψ′|v′|Ψ′〉.
Gauge principle : Postulate that physical laws are invariant under (111)+ (113). In this case, it

can be proven that the hamiltonian is uniquely determined to be (109). Eqs. (113) + (111) define an U(1)
transformation.
Therefore, U(1) gauge invariance determines the electromagnetic interaction.

4.2 From Dirac and Maxwell eqs. to QED.
Maxwell eqs. in terms of Am = (A, V ) are invariant under the gauge transformations

Am → A′m = Am − ∂mα . (114)

Gauge invariance postulate : the physics is invariant under (114), supplemented with the phase
transformation

Ψ(x)→ Ψ′(x) = eiqα(x)Ψ(x) . (115)

Then Dirac eq. is not invariant under (115) unless we replace the derivative with the covariant derivative

DmΨ ≡ (∂m + iqAm)Ψ → (DmΨ)
′

= (∂m + iqA′m)Ψ′ = eiqα(x)DmΨ(x) . (116)

Dirac equation in an electromagnetic field becomes therefore

(iγmDm −M)Ψ = (iγm∂m − qγmAm −M)Ψ = 0 . (117)

The Dirac and Maxwell eqs. can be derived from the lagrangian density

LQED = Ψ̄(iγmDm −M)Ψ− 1

4
F 2
mn . (118)

The coupled Euler-Lagrange field eqs. are then (117), plus

∂mFmn = gΨ̄γnΨ ≡ jn , (119)

where jn is the electromagnetic current of the charged fermion. Notice that jn is precisely the current
constructed according to the Noether procedure described previously. From (119) we can derive the
charge conservation law

∂mjm = 0→ dQ

dt
=

∫
d3x ∂mjm = 0 , where Q =

∫
d3x j0(x) . (120)
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Let us make some comments :
• The massless photon has two propagating degrees of freedom.
• A photon mass Lmass =

M2
A

2 A2
m breaks gauge invariance and describes three degrees of freedom.

• The propagator of a massive photon is found from inverting the free lagrangian

LProca = −1

4
F 2
mn +

M2
A

2
A2
m =

1

2
Am[gmn(�+M2

A)− ∂m∂n]An,

∆−1
mn(x− y) = −i[gmn(�+M2

A)− ∂m∂n]δ4(x− y) . (121)

Therefore, in momentum space (Homework)

∆mn(k) = −i
gmn − kmkn

M2
A

k2 −M2
A

. (122)

Notice that due to the current conservation ∂mjm = 0, the longitudinal polarization does not contribute
to amplitudes. Therefore, the UV properties of the massless and massive photon theories are the same.
On the other hand, experimentally the photon is massless to a high accuracy. Indeed, the present experi-
mental limit on the photon mass is mγ ≤ 10−18 eV.

Finally, we can give the Feynman rules for QED :
- associate to each fermion propagator of momentum p the factor i(γ

mpm+M)
p2−M2+iε

.

- to each photon propagator of momentum p (in the ξ = 1 gauge) the factor −iηmn
p2−M2+iε

.
- to each vertex the factor iQeγm, where Q = −1 for the electron.
- to each external initial fermion the factor us(p).
- to each external final fermion the factor ūs(p).
- to each external initial antifermion the factor v̄s(p).
- to each external final antifermion the factor vs(p).
- to each external initial photon the factor εm(p).
- to each external final photon the factor ε̄m(p).
The reader can find more about the historical rise of QED in [9].

4.3 Massive vector fields: Proca and Stueckelberg theories
Independently of H. Yukawa that proposed in 1935 the theory of nuclear forces mediated by scalar
mesons exchanges, A. Proca proposed in 1936 a theory of nuclear forces where the mediatior is a massive
vector field. The lagrangian he proposed, called Proca lagrangian [10] is

LProca = − 1

4
F 2
mn +

M2
A

2
A2
m (123)

leads to the field equations

∂mFmn +M2
AAn = (�+M2

A)An − ∂n(∂A) = 0 . (124)

Taking a further derivative on the field eqs. (124) we find as a consequence

∂A ≡ ∂mAm = 0 . (125)

Notice that, unlike the Maxwell lagrangian in which (125) is not a consequence of field dynamics, but
one of the possible gauge choices, in the Proca case its interpretation is different. Gauge symmetry is
explicitly broken in the Proca lagrangian by the mass term MA, whereas (125) is just a consequence of
field eqs. Because of this, the number of degrees of freedom of a massive vector field is three, compared
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to the two degrees of freedom of the photon. Notice that by using (125) one finds that the massive vector
field satisfies the same Klein-Gordon equation (31) than the massive spin-zero scalar field

(�+M2
A) Am = 0 . (126)

Quantization of the massive vector field is therefore very similar to the one of the massive scalar described
in Section 3.2.

That there is another formulation of the massive vector theory introduced by E. Stueckelberg in
1938 [11], which is manifestly gauge invariant and illuminating from the modern point of view. It uses,
in addition to the gauge field, an additional pseudo-scalar field a and is given by

LStueckelberg = − 1

4
F 2
mn +

1

2
(∂ma+MAAm)2 . (127)

Notice that the lagrangian (127) is invariant under the gauge transformations

A′m(x) = Am(x)− ∂mα(x) , a′ = a+MA α(x) . (128)

Notice that due to gauge invariance, we can choose a gauge α = −(a/MA) where the Stueckelberg scalar
is set to zero and the Stueckelberg lagrangian reduces to the Proca one. This gauge is called the unitary
gauge. In modern terms, the Stueckelberg scalar is absorbed and provides the longitudinal component of
the gauge field. This is precisely what is realized in the Higgs mechanism, that we will describe later on.

4.4 Non-abelian gauge theories
U(1) is a particular case of unitary abelian transformations. Another case of particular interest are the
non-abelian transformations.

SU(n) transformations are described by n× n matrices U , satisfying

U †U = UU † = I , det U = 1 . (129)

The simplest case is SU(2), proposed by Yang and Mills in 1954 [15]. Its simplest representation is a
doublet

Ψ =

(
Ψ1

Ψ2

)
, Ψ′ = U(θ)Ψ , where U(θ) = e

i
2
gθaτa , (130)

where τa are the Pauli matrices and g is the SU(2) gauge coupling. It turns out that the number of gauge
bosons W a

m equals the number of generators (three for SU(2)). The most compact notation introduces
a matrix

Wm = W a
m

τa
2

=

(
W 3
m W 1

m − iW 2
m

W 1
m + iW 2

m −W 3
m

)
≡
(

W 3
m

√
2W+

m√
2W−m −W 3

m

)
(131)

Homework : show that

DmΨ ≡ (∂m − igWm)Ψ→ (DmΨ)′ = UDmΨ ,

if Wm →W ′m = UWmU
−1 − i

g
(∂mU)U−1 . (132)

The infinitesimal gauge variation in component form is

δW a
m = Dmθ

a ≡ ∂mθa + gεabcW
b
mθ

c . (133)

The field strength is built from
[Dm, Dn] = −i g Fmn . (134)
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Homework : Show that

Fmn = ∂mWn − ∂nWm − ig[Wm,Wn] , Fmn → F ′mn = UFmnU
−1 . (135)

For SU(2) this implies (homework :)

F amn = ∂mW
a
n − ∂nW a

m + gεabcW
b
mW

c
n . (136)

The Yang-Mills lagrangian is finally given by

LYM = −1

4
F amnF

a,mn = −1

4
(∂mW

a
n − ∂nW a

m)2

−g
2
εabc∂mW

a
nW

b,mW c,n − g2

4
εabcεadeW

b
mW

c
nW

d,mW e,n . (137)

For a general Yang-Mills theory of generators Ta, the generalisation of the antisymmetric tensor εabc are
the structure constants fabc defined according to

[Ta, Tb] = i fabc Tc . (138)

The lagrangian and the field strength have still the forms (136)-(137), with the replacement εabc → fabc.

Notice that non-abelian gauge bosons have self-interactions, unlike the photon ! The full La-
grangian describing interaction of Yang-Mills fields with charged fermions is then

L = Ψ̄(iγmDm −M)Ψ− 1

4
F amnF

a,mn + Lξ + Lghosts = L0 + Lint . (139)

In (139), Lξ is a gauge fixing term, whereas Lghosts is the Fadeev-Popov ghost lagrangian [16], coming
from the covariant quantization of non-abelian theories.

Homework : show that for an SU(2) doublet

Ψ̄(iγmDm −M)Ψ = Ψ̄k[δkl(iγ
m∂m −M) +

g

2
γmW a

m(τa)kl]Ψ
l , (140)

whereas the fermion and Yang-Mills field equations are

(iγmDm −M) Ψ = 0 ,

∂mF amn + gεabcA
b,mF cmn = − g Ψ̄γn

τa
2

Ψ (141)

where on the right-hand side one can identify the SU(2) fermionic current jan, which can also be con-
structed according to the Noether procedure. Notice that the massive Yang-Mills field propagator is

Dab
mn(k) = −iδab

gmn − kmkn
M2
A

k2 −M2
A

. (142)

Since here ∂mjam 6= 0 , the longitudinal polarization does contribute to scattering amplitudes. Therefore,
unlike the abelian case, here the UV properties of the massless and massive YM theories are different.
This fact has various consequences :
- the theory has bad UV behaviour (uncontrolled UV divergences), since in the UV the propagator be-
haves as Dab

mn(k) ∼ 1/M2
A.

- the amplitude WLWL → WLWL, where WL is the longitudinal component of the W gauge boson,
grows with energy and invalides perturbation theory for energies above around 1.2 TeV.
The conclusion of all these problems is that the Yang-Mills boson masses should not be added by hand,
but be generated in a more subtle way. On the other hand, massless gauge fields (infinite range) can-
not describe electroweak interactions, which are short range. We need therefore to give gauge bosons a
mass, but we need another way to generate gauge boson masses. This is explained via the spontaneous
symmetry breaking and the Higgs mechanism, to which we now turn.
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Fig. 5: Feynman rules for Yang-Mills theories. Solid lines are fermion propagators, wavy lines are gauge propa-
gators, whereas the dotted ones are scalars [12]. The structure constants are defined for an arbitrary gauge group
via [T a, T b] = ifabcT c.

5 Spontaneous symmetry breaking.
We already noticed that Symmetries, through the Noether theorem, imply the existence of conserved
charges Qa, commuting with the hamiltonian of the system [H,Qa] = 0. Let us define in what follows
the group element implementing symmetry transformations of parameters θa, U(θ) = eiθaQ

a
. There are

two qualitatively different ways symmetries are realized in nature :
i) Weyl-Wigner (WW) realization : in this case the vacuum state |0〉 is invariant under the symmetry

U(θ)|0〉 ≡ eiθaQa |0〉 = |0〉 ⇒ Qa|0〉 = 0 . (143)

In this case the symmetry is manifest in the spectrum and the interactions.
The argument goes as follows: The fields Φi of the theory transform according to irreducible representa-
tions of the group generated by Qa

U(θ)ΦiU(θ)−1 = Uij(θ)Φj . (144)

Let us consider a quantum state |i〉 = Φi|0〉. The action of the symmetry transformation on this state is

U(θ)|i〉 = U(θ)ΦiU(θ)−1U(θ)|0〉 = Uij(θ)Φj |0〉 = Uij(θ)|j〉 . (145)

So the spectrum of the theory is classified in multiplets of the symmetry group. Moreover, since
[H,U(θ)] = 0, states in the same multiplet have the same energy.
Simple examples of this type are : translations (conserved charge: momentum), rotations (conserved
charge: angular momentum), U(1)em (conserved charge: electric charge)...
ii) Nambu-Goldstone (NG) realization : in this case the vacuum state is not invariant under the sym-
metry.

eiθaQ
a |0〉 6= |0〉 ⇒ Qa|0〉 6= 0 . (146)
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Fig. 6: Magnetization in ferromagnets. At high temperatures, spins orientation are random. At low-temperatures,
the alignement of spins due to spin-spin interactions breaks the rotational symmetry of the hamiltonian.

In this case the symmetry is not manifest in the spectrum. We talk about spontaneous symmetry breaking.
Examples of this type include rotation (or parity) symmetry in ferromagnets, SU(2)weak, SU(2)L ×
SU(2)R chiral symmetry of strong interactions, etc
A nice sentence summarizing the outcome of the two realizations of global symmetries is that of S.
Coleman in his Erice Lectures [21] : "the symmetry of the vacuum is the symmetry of the world".
The simplest example of the NG realization is the Ising model describing N spins in space dimension d,
of hamiltonian

H = − J
∑
(i,j)

SiSj − B
∑
i

Si , (147)

with Si = ±1 labelling the two possible values of the spin "i". For zero magnetic field B = 0 the system
has a Z2 symmetry which reverts the spins Si → −Si. As a consequence, the magnetization defined as

M = lim
B→0,N→∞

1

N

N∑
k=1

〈Sk〉

should therefore vanish. However experimentally it is known that

M = 0 for T ≥ Tc , M 6= 0 for T < Tc, where kTc = 2dJ . (148)

The reason for the violation of the Z2 symmetry is that at low temperatures, due to the spin-spin in-
teractions of strength J , spins tend to align, such that the ground state correspond to a state with all
spins aligned. This state does violate the Z2 symmetry, since the Z2 transform of this ground state is the
state with all spins reversed. Whereas both states (vacua) are equally possible, the transition from one
to the other is highly suppressed for large N . So if the system is in one of the two vacua, it will stay
there a time that scales as eN . On the other hand, at high-temperature, spins are oriented arbitrarily in
order to increase the entropy (number), which wins over the higher-energy of such configurations. This
phenomenon is called spontaneous symmetry breaking, since the hamiltonian of the system respects the
Z2 symmetry, which is broken only by the ground state for T < Tc. The field theory analog of this
phenomenon is described in the next paragraph.

5.1 The Goldstone theorem
In a theory with continuous symmetry, for every generator which does not annihilate the vacuum 〈T aΦ〉 6=
0 there is a massless, NG particle [17].
Ex: One of the simplest examples is the O(N) linear sigma model.
Consider a theory with N scalar fields Φ = (Φ1,Φ2, · · ·ΦN ), with lagrangian

L =
1

2
(∂mΦ)2 − V (Φ) , V (Φ) = −µ

2

2
Φ2 +

λ

4
(Φ2)2 , (149)
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Fig. 7: Spontaneous symmetry breaking. The vacuum manifold minima is symmetric by rotations, but picking up
a vacuum breaks the symmetry spontaneously. Figure taken from [18].

where in our convention µ2 > 0 and where Φ2 =
∑N

i=1 ΦiΦi. The model has a continuous O(N)
symmetry acting as Φ→ RΦ, with R a N ×N rotation matrix. The scalar potential is minimized for

∂V

∂Φi
= 0 ⇒ Φ0

2 =
µ2

λ
≡ v2 . (150)

The vacuum manifold is O(N) invariant. By an O(N) rotation, the ground state can be chosen to be

〈Φ〉 = Φ0 = (0, 0 · · · v) , (151)

preserving an O(N − 1) subgroup. Goldstone’s theorem tells us that we expect the model to have N − 1
massless particles, corresponding to the number of broken generators of the coset group O(N)/O(N −
1).

In order to check this, we define a set of shifted fields:

Φ(x) = (πk(x), v + σ(x)) , k = 1, 2 · · · , N − 1 , (152)

such that 〈πk〉 = 〈σ〉 = 0. The lagrangian becomes

L =
1

2
((∂mπ)2 + (∂mσ)2)− µ2σ2 −

√
λ µσ3

−
√
λ µπ2σ − λ

4
(σ2 + π2)2 , (153)

where π2 =
∑N−1

k=1 πkπk. The manifest symmetry is indeed O(N − 1), which rotates the "pions" π’s
among themselves. The physical masses, visible from (153) are

m2
σ = 2µ2 , m2

πk
= 0 . (154)

Therefore we find that the "pions" are massless; they are the N − 1 Nambu-Goldstone (NG) bosons of
the broken symmetry. It is said that the unbroken O(N − 1) symmetry is realized a la Weyl-Wigner,
whereas the original O(N) symmetry is realized a la Nambu-Goldstone.

The presence of a continuous symmetry of the lagrangian implies, via the Noether theorem, the
existence of a conserved current ∂mJm = 0. This implies

0 =

∫
d3x [∂mJm(x, t),Φ(0)] = ∂0

∫
d3x [J0(x, t),Φ(0)] +

∫
dS [J(x, t),Φ(0)] , (155)
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where the last term is a surface integral. For a sufficiently large surface and therefore space-like distance,
the last term vanishes and one obtains

d

dt
[Q(t),Φ(0)] = 0 , (156)

where Q(t) =
∫
d3x J0(x) is the charge associated to the current Jm. If the vacuum expectation value

〈0|[Q(t),Φ(0)]〉0 ≡ v 6= 0 , (157)

then the symmetry is spontaneously broken. By inserting a complete set of states |n〉 and by using the
translation operator, one can derive from (157) the relation∑

n

(2π)3δ3(pn) {〈0|J0(0)〉n〈n|Φ0(0)〉0 e−iEnt − 〈0|Φ0(0)〉n〈n|J0(0)〉0 eiEnt} = v . (158)

The left-hand side of (158) is non-vanishing and time-independent, according to (156). Since the positive
and negative frequencies cannot compensate each other, (158) can hold if and only if all matrix elements
are zero for all states except one |n〉, for which En = 0 for pn = 0, i.e. for a massless state in the
spectrum. This is precisely the Goldstone boson, which has the properties

〈n|Φ0(0)|0〉 = 1 , 〈0|Jm(0)|n(p)〉 = ivpm . (159)

Another hint of the existence of a massless particle in this case comes from the relation (74). If the current
is conserved, then ∆ = 0, however if it is spontaneously broken, then δ〈0|Tφ(x1)φ(x2) · · ·φ(xn)|0〉 6=
0. Then

lim
k→0

km

∫
d4z e−ikz〈0|TJm(z)φ(x1)φ(x2) · · ·φ(xn)|0〉 = δ〈0|Tφ(x1)φ(x2) · · ·φ(xn)|0〉 6= 0 .

(160)
This is possible only if the correlation function has a massless pole

lim
k→0

∫
d4z e−ikz〈0|TJm(z)φ(x1)φ(x2) · · ·φ(xn)|0〉 ∼ −km

k2
δ 〈0|Tφ(x1)φ(x2) · · ·φ(xn)|0〉 , (161)

which implies the existence of a massless Goldstone boson oupled to the current Jm, in agreement with
(159).

General (classical) proof of the Goldstone theorem.
Consider the scalar theory of lagrangian

L =
1

2
(∂mΦi)

2 − V (Φi) (162)

and a global continuous symmetry group, of generators T a. The invariance of the scalar potential

V (Φi + δΦi) = V (Φi) (163)

under infinitesimal transformations δΦi = iθaT aijΦj of parameters θa implies

∂V

∂Φi
T aijΦj = 0 . (164)

Differentiating again and taking the vacuum expectation value (vev), we get

〈 ∂2V

∂Φk∂Φi
T aijΦj +

∂V

∂Φi
T aik〉 = 0 . (165)
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Fig. 8: The meson octet acts as goldstone bosons of the chiral symmetry breaking SU(3)L × SU(3)R →
SU(3)V .Figure taken from [19].

Remembering thatM2
ki = 〈 ∂2V

∂Φk∂Φi
〉 is the scalar mass matrix, we obtain

M2
ki (T av)i = 0 . (166)

We therefore found the general form of the Goldstone theorem: If the vacuum is not invariant under
a symmetry generator T av 6= 0, then T av is an eigenvector of the mass matrixM2 corresponding to a
zero eigenvalue.

Are there known examples of Goldstone bosons in nature ? Yes, there are several, but none of
them not corresponding to a fundamental spin 0 particle !. Two well-known examples are
- Magnons spin waves in ferromagnets, which are long wavelength collective spin configurations.
- Pions π ∼ q q̄ are pseudo-Goldstones for the breaking of the chiral → vector symmetries U(3)L ×
U(3)R → SU(3)V ×U(1)B (see figure 8). They are not exactly massless (therefore the name "pseudo")
due to a small explicit breaking coming from quark masses. Pions are (pseudo)scalar particles, but
not elementary, they are quark-antiquark bound states. In this case we talk about dynamical symmetry
breaking.

Observation : The U(1)A symmetry is broken by quantum anomalies, there is no corresponding
goldstone boson.

5.2 Chiral symmetries and pions as goldstone bosons
Strong interactions have as elementary degrees of freedom quarks and gluons and are described at the
microscopic (UV) level by Quantum Chromodynamics (QCD). At high energy QCD is perturbative due
to asymptotic freedom and its predictions agree remarquably well with the high-energy data. At low-
energy, it becomes nonperturbative and it is very difficult to perform ab-initio QCD computations to
describe properties and interactions of hadrons. At low-energy, the mesons and baryons are the relevant
degrees of freedom; they interactions, although hard to derive directly from QCD, are constrained from
symmetries of strong interactions. The model described below is an excellent first step towards a phe-
nomenological description of strong interactions between pions and the nucleons. The corresponding
effective lagrangian is called the linear sigma model, defined by

L = L0 + εL1 , (167)
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where :

L0 ≡ ψa(x)
[
iδab/∂ − g(σ(x)δab + iπi(x)τ iabγ5)

]
ψb(x) +

1

2
(∂µσ(x)∂µσ(x) + ∂µπ

i(x)∂µπi(x))

− µ
2

2
(σ2(x) + πi(x)πi(x)) − λ

4
(σ2(x) + πi(x)πi(x))2 ,

L1 ≡ c σ(x) . (168)

The spinors ψa(x) (a = 1, 2) are fermion doublets, the proton and the neutron 3, σ(x) et πi(x) (i =
1, 2, 3) are scalar fields representing respectively the sigma4 and the three pions. We take λ and εc to be
positive, but µ2 can be positive or negative. The matrices τ i (i = 1, 2, 3) are the three Pauli matrices.

In order to avoid a too heavy notation, the index a of the fermion doublets and the internal index i
will be omitted by using the following notations:

ψ(x) ≡
(
ψ1(x)
ψ2(x)

)
, ψ†(x) ≡ (ψ†1(x) ψ†2(x)) , π(x) ≡

π1(x)
π2(x)
π3(x)

 , τ ≡

τ1

τ2

τ3

 . (169)

The Lagrangian L0 can therefore be written in the compact form

L0 = ψ[i/∂ − g(σ + iπ · τγ5)]ψ +
1

2
(∂µσ∂

µσ + ∂µπ · ∂µπ) − µ2

2
(σ2 + π2) − λ

4
(σ2 + π2)2 .(170)

In order to distinguish the left and right fermion chiralities, it is necessary to introduce the chiral
projectors :

PR ≡
1 + γ5

2
, PL ≡

1− γ5

2
. (171)

Using them, we define chiral spinors:

ψL,R ≡ PL,Rψ , ψ
L,R

= ψPR,L . (172)

It can be shown that the lagrangian is invariant under a global symmetry group SU(2)×SU(2). In order
to check this, let UR and UL be two global SU(2) matrices. Then, L0 is invariant under the following
transformation:

ψR → URψR , ψL → ULψL ,

M ≡ σI2×2 + iπ · τ → UL M U †R . (173)

Indeed, this can be easily verified writing the lagrangian in the more elegant and transparent form

L0 = ψLi/∂ψL +ψRi/∂ψR − g(ψLMψR +ψRM
†ψL)

+
1

4
Tr(∂µM

†∂µM)− µ2

4
Tr(M †M)− λ

16
(TrM †M)2 . (174)

Notice that the term L1 is only invariant under the transformation vector transformations defined
byUL = UR. The infinitesimal form of these transformations can be found starting from the parametriza-
tion

UR = e
1
2

(α−β)τ , UL = e
1
2

(α+β)τ , (175)

where α (β)) parametrize the vector (axial) transformations. Then the infinitesimal global transforma-
tions are

σ → σ − β · π , π → π −α× π + βσ ,

3In the “quark constituants model”, the doublet spinors are the quarks u and d instead of the proton and neutron
4This particle appears naturally in the effective theories describing interactions between pions and nucleons if we require an

invariance under an axial symmetry. To date, it is not identified unambiguously in the experimental data
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ψ
L
→ ψ

L
+
i

2
(α+ β) · τψ

L
,

ψ
R
→ ψ

R
+
i

2
(α− β) · τψ

R
, (176)

where α and β are infinitesimal vectors. Notice that L1 is only invariant under the vector transforma-
tions induced by α. The symetry induced by the vector α is called “vector symmetry”, whereas that
correspondent to the vector β is called “axial symmetry”.

Let us denote V i
µ(x) (vector current) the current associated to the infinitesimal transformations

parameterized by the vector αi and Aiµ(x) (axial current) the current associated to the transformations
parameterized by the vector βi. They are given explicitly by

Vµ = ψ̄γµ
τ

2
ψ + π × ∂µπ ,

Aµ = ψ̄γµγ5
τ

2
ψ + σ∂µπ − π∂µσ . (177)

By using Noether theorem, we find the conservation laws

∂µV i
µ(x) = 0 , ∂µAiµ(x) = −ε c πi(x) . (178)

Therefore the vector symmetry is conserved, whereas the lagrangian L1 describes the explicit breaking
of the axial symmetry.

One can show that the vector and axial currents satisfy some group commutation relations, called
current algebra. By using the canonical commutation and anticommutation relations at equal times

δ(x0 − y0)
[
πi(x), ∂0πj(y)

]
= iδ4(x− y)δij ,

δ(x0 − y0)
[
σ(x), ∂0σ(y)

]
= iδ4(x− y) ,

δ(x0 − y0)
{
ψαa(x), ψ†βb(y)

}
= δ4(x− y)δαβδab (179)

it can be shown that

δ(x0 − y0)
[
V i

0 (x), V j
µ (y)

]
= iδ4(x− y)εijkV k

µ (x) + S.T. ,

δ(x0 − y0)
[
V i

0 (x), Ajµ(y)
]

= iδ4(x− y)εijkAkµ(x) + S.T. ,

δ(x0 − y0)
[
Ai0(x), Ajµ(y)

]
= iδ4(x− y)εijkV k

µ (x) + S.T. , (180)

where the supplementary terms denoted S.T (from “Schwinger terms”) are only present when µ 6= 0 and
are total derivatives of local distributions:

∇y

[
f(x, y)δ4(x− y)

]
. (181)

The relations (180) form the so-called Gell-Mann current algebra and play an important role in the study
of low-energy interactions of pions and nucleons. One can also define the charges:

Qi±(x0) ≡ 1

2

∫
d3x(V i

0 (x)±Ai0(x)) . (182)

Using the commutation relations previously established, one can prove the commutation relations[
Qi±, Q

j
±

]
= iεijkQk± ,

[
Qi+, Q

j
−

]
= 0 . (183)

These relations are precisely those of the Lie algebra SU(2)×SU(2), implementing the chiral symmetry
of the system.
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The scalar potential of the linear sigma model is given by

V =
µ2

2
(σ2 + π2) +

λ

4
(σ2 + π2)2 − εc σ . (184)

Before discussing the minimization of the scalar potential, let us first state our expectations based on
symmetry arguments and Goldstone theorem. For ε = 0, the scalar potential and actually the whole
lagrangian has the symmetry SO(4) = SU(2)L × SU(2)R. One can treat (π, σ) as a vector under
SO(4). We can always use a rotation to choose the vacuum of the system of the form (0, σ0 = v) ,
which preserves only a SO(3) = SU(2)V subgroup of the original symmetry. This is also easily seen
by using the matrix M , in which case 〈M〉 = vI2×2, which is invariant under the subgroup UL = UR .
We therefore expect three goldstone bosons related to the spontaneous breaking of the axial symmetries
generated by the parameters β, which will be readily identified with the pions π. The symmetry breaking
term L1 breaks explicitly the axial symmetries and therefore we expect to give a mass to the pions.
The minimization of the potential can be safely done for π = 0. The minimum σ0 of the potential is
determined by the equation

(µ2 + λσ2
0) σ0 = εc . (185)

The minima of the potential are qualitatively different in the case µ2 > 0 and µ2 < 0. Indeed,
for µ2 > 0 it can easily ne checked graphically that there is only one minimum, whereas for µ2 < 0
there are two minima. More interesting, when ε = 0 and µ2 < 0, the minima are non-symmetric, even if
the Lagrangian is invariant under the axial transformations. We then talk about spontaneous symmetry
breaking of the axial symmetries, a consequence of the general Goldstone theorem we disscused in the
previous paragraph.

In order to work out the physical spectrum, one defines σ(x) = s(x)+σ0 where σ0 is the constant
field σ in the ground state.

We are primarily interested in the limit ε c→ 0, where the full Lagrangian is invariant under axial
transformations and

– if µ2 > 0, we have the symmetric case:

σ0 = 0 , mψ = 0 , m2
π = m2

σ = µ2. (186)

– if µ2 < 0, the symmetry of the Lagrangian is spontaneously broken in the ground state and

σ2
0 = v2 = −µ2/λ , mψ = gv , m2

σ = 2λv2 = −2µ2 , mπ = 0 . (187)

The pions are therefore indeed massless, in agreement with the Goldstone theorem. For ε 6= 0, it can be
readily checked that the pions get a mass from the explicit axil symmetries breaking. For small ε, pions
mass is given by mπ = εv

√
λ
−µ2 .

A natural question arises: What happens if the spontaneously broken symmetry is gauged ? The
answer is given in the next subsection.

5.3 The Higgs mechanism
Let us start for simplicity with an abelian gauge theory

L = −1

4
F 2
mn + |DmΦ|2 − V (Φ) , (188)

with Dm = ∂m + ieAm, Φ = 1√
2
(Φ1 + iΦ2) and a scalar potential

V = −µ2|Φ|2 + λ(|Φ|2)2 = −µ
2

2
(Φ2

1 + Φ2
2) +

λ

4
(Φ2

1 + Φ2
2)2 , (189)
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invariant under the local U(1) gauge transformations

Φ→ eiα(x)Φ , Am → Am −
1

e
∂mα . (190)

We expand around the vacuum state

Φ0 =

√
µ2

2λ
=

v√
2
, Φ(x) =

1√
2

(v + φ1 + iφ2) . (191)

From the quadratic mass terms in the scalar potential we find m2
1 = 2µ2, m2 = 0, therefore φ2 is the

Goldstone boson. New features appear however from the kinetic term

|DmΦ|2 =
1

2
(∂mφi)

2 + evAm∂
mφ2 +

e2v2

2
A2
m + · · · (192)

Indeed, it is manifest from (192) that the gauge boson acquired a mass M2
A = e2v2. But this can only

happen if the gauge field absorbed one degree of freedom, since the massive gauge field has three degrees
of freedom, whereas the massless one has only two degrees of freedom. The correct counting of degrees
of freedom is

Am(MA = 0) + φ2 → Am(MA 6= 0) (193)

That this is indeed true can be seen in various ways:
i) The quadratic term in the lagrangian can be diagonalized by redefining the gauge field

−1

4
F 2
mn +

1

2
(∂mφ2)2 +

√
2evAm∂

mφ2 +
e2v2

2
A2
m

= −1

4
(∂mBn − ∂nBm)2 +

e2v2

2
B2
m , (194)

where Bm = Am + 1
ev∂mφ2. Therefore φ2 disappeared from the quadratic part, and is "absorbed" into

the longitudinal component of the gauge field.
ii) The Goldstone can be eliminated altogether from the lagrangian in the so-called unitary gauge. The
corresponding parametrization is

Φ(x) =
1√
2
e
iθ(x)
v (v + ρ(x)) (195)

and the Goldstone is removed by the gauge transformation Φ → Φ′ = e−
iθ
v Φ, Am → A′m = Am +

1
ev∂mθ.

In the unitary gauge, the lagrangian is (homework)

L = −1

4
(F ′mn)2 + (∂m − ieA′m)Φ′(∂m + ieA′m)Φ′ − µ2Φ′

2 − λΦ′
4

The spectrum of the model contains therefore a massive gauge boson and the Higgs boson Φ′, of mass
2µ2 [1].
The Higgs mechanism, non-abelian case

Consider a gauge group G of rank r and scalar fields in some irreducible n-dim. representation

L = −1

4
F amnF

a,mn + |[(∂m − igT aAam)Φ]|2 − V (Φ) , (196)

and H ∈ G the subgroup of rank s leaving the ground state invariant

T av = 0 , a = 1 · · · s
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T av 6= 0 , a = s+ 1 · · · r (197)

In the unitary gauge parametrization

Φ(x) = ei
∑r
a=s+1 Ta

ξa(x)
v

ρ(x) + v√
2

, (198)

where ξa are the Goldstone bosons, ρ(x) the remaining scalar fields, and 〈ξa〉 = 〈ρ〉 = 0. The gauge
transformation

Φ(x)→ Φ′(x) = UΦ , with U = e−i
∑r
a=s+1 Ta

ξa(x)
v

Am → A′m = U (Am +
i

g
∂m) U−1 (199)

eliminates the Goldstone bosons from the lagrangian. The resulting mass matrix of the vector fields is
then

M2
ab = g2(Tav)†(Tbv) =

g2

2
v†{Ta, Tb}v . (200)

In this case r − s gauge bosons become massive

Aam + ξa → A′
a
m = Aam −

1

v
Dmξ

a + · · · (201)

where Am denote the massless gauge fields, containing two degrees of freedom, whereas A′m denote the
massive gauge fields.
Notice that the number of physical massive Higgs scalars is equal to the number of original scalars,
minus the number of broken gauge generators.

- Gauge boson propagator
Let us discuss the massive gauge boson propagator in the case of the abelian case; the result being

the same in the non-abelian case, the conclusion will holds in both cases.
At tree-level, the photon polarization tensor is given by

iΠµν(k) = + , (202)

which equals 5:

iΠµν(k) = ig2v2gµν + (−gv)2kµ(−kν)
i

k2 + iε
= ig2v2

[
gµν −

kµkν
k2 + iε

]
. (203)

The free photon propagator in the Feynman gauge 6 is given by

Dµν
0 (k) = − igµν

k2 + iε
. (204)

We call Dµν(k) the photon propagator resulting from the summation of Πµν(k) at all orders:

Dµν(k) = Dµν
0 (k) +Dµα

0 (k)(iΠαβ(k))Dβν
0 (k) + · · · (205)

This is a geometric series which becomes trivial if we notice that[
gµα −

kµkα
k2 + iε

] [
gαβ − kαkβ

k2 + iε

]
= gµ

β − kµk
β

k2 + iε
. (206)

5The momentum of the line attached to 〈0|φ|0〉 is zero since the vev’s is spacetime independent.
6The polarization tensor we obtained is transverse. It will therefore not modify the gauge-dependent term if we would work

in a different gauge.
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We obtain:

Dµν(k) = Dµν
0 (k) +Dµα

0 (k)

[
+∞∑
n=1

(
g2v2

k2 + iε

)n][
gα

ν − kαk
ν

k2 + iε

]
= − i

k2 − g2v2 + iε

[
gµν −

kµkν
k2 + iε

]
− i kµkν

(k2 + iε)2
, (207)

where the first term is the propagator of a massif gauge boson of mass mA = gv, whereas the second
term is a longitudinal term depending on the chosen gauge. The longitudinal mode contains now a
physical mode, as expected for a massive gauge boson. An important observation is that the massive
gauge propagator (207) behaves as Dµν(k) ∼ 1/k2 in the UV k →∞. This has the crucial consequence
that in the non-abelian case the theory with spontaneous symmetry breaking and massive gauge boson is
renormalizable, unlike its naive version with a mass introduced by hand (142)7.

5.4 Quantization of spontaneously broken gauge theories : Rξ gauges
- The abelian case

Let us come back to the Higgs mechanism and start with the abelian case. One can notice from
(192) the mixing between the gauge field and the would-be Goldstone boson. For the quantization of the
theory, it is more convenient to work in a gauge where such a term is absent. From (191) and by defining
Φ1 = v + h,Φ2 = ϕ, a convenient gauge fixing term is then

Lg.f. = − 1

2ξ
(∂mA

m − eξvϕ)2 . (208)

The quadratic part of the lagrangian, which will determine the propagator, becomes in this class of gauges

L2 = −1

2
Am

[
−ηmn(�+ (ev)2) + (1− 1

ξ
)∂m∂n

]
−1

2
h(�+m2

h)h − 1

2
ϕ(�+ ξ(ev)2))ϕ , (209)

from which one can deduce the massige gauge field, the higgs and and the goldstone boson propagators

∆mn(k) =
−i

k2 −M2
A

(
ηmn − (1− ξ) kmkn

k2 − ξM2
A

)
,

Dh(k) =
i

k2 −m2
h

, Dϕ(k) =
i

k2 − ξM2
A

, (210)

where MA = ev is the mass of the gauge boson. The gauge parameter ξ is unphysical and has to cancel
in the computation of all physical processes. Notice also the unphysical pole in the goldstone propagator
at k2 = ξM2

A.
Unlike the case of QED, the ghost fields cannot be completely neglected. Indeed, following the procedure
described in the Appendix, one finds their lagrangian to be

Lghosts = c̄

[
−�− ξM2

A(1 +
h

v
)

]
c . (211)

The ghosts couple therefore to the Higgs and this interaction has to be taken into account in quantum
computations.

7The massive QED with a mass added by hand, called Proca theory, is however renormalizable. Indeed, the part of the gauge
propagator with bad UV behaviour, prop. to kµkν/k2M2, does not contribute to scattering amplitudes, due to the conservation
of the electromagnetic current. This property does not hold anymore, however, in non-abelian theories.
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The naive massive gauge field propagator (or equivalently, the gauge field propagator in the unitary
gauge) is obtained in the limit ξ →∞. The renormalizability in this limit is clearly subtle and the unitary
gauge is not practical for quantum computations.

- The non-abelian case
For any complex scalar field representation χ of a gauge group G, one can define a corresponding

real representation φ via φT =
√

2(Reχ, Imχ). The gauge generators Tain this representation are real
and antisymmetric. The starting point lagrangian is

L = −1

4
F amnF

mn,a + Lg.f. + Lghosts +
1

2
(Dmφi)

2 − V (φ) . (212)

The gauge covariant derivative and gauge transformations are

Dmφi = ∂mφi + gAamT
a
ijφj , δφi = −gαaT aijφj . (213)

One define φi = vi + χi. For finding the masses and the propagators, one expands the lagrangian to the
quadratic order. In the absence of the gauge fixing term (and the associated ghost lagrangian), one would
find

L2 = −1

2
Aam

[
−ηmn(δab�+M2

A,ab) + δab∂
m∂n

]
Abn

+
1

2
(∂mχi)

2 + gAam(T av)∂mχ− 1

2
χiM

2
χ,ijχj , (214)

where M2
χ,ij = ∂2V

∂χi∂χj
. The Rξ gauge in this case is defined by

Lg.f. = − 1

2ξ
(∂mAam − gξχTav)2 . (215)

As in the abelian case, the mixing Goldstones-gauge field is removed in this case. Following the proce-
dure in the Appendix, one also finds the ghost lagrangian

Lghosts = c̄a
[
−(∂mD

m)ab − ξg2(Tav)(Tbv + Tbχ)
]
cb . (216)

Notice that the ghosts acquired also a (non-physical, of course) mass matrix. The propagators of gauge
fields, scalars and ghosts are given by

∆mn(k) =
−i

k2 −M2
A

(
ηmn − (1− ξ) kmkn

k2 − ξM2
A

)
,

Dχ(k) =
i

k2 − ξg2(Tav)(Tav)−M2
χ

,

Dg(k) =
i

k2 − ξM2
A

(217)

where all propagators have to be understood as matrices, (M2
A)ab = g2(Tav)(Tbv) is the mass matrix

of the gauge bosons. The mass matrix for the scalars is ξg2(Tav)i(Tav)j + (M2
χ)ij ; the first term is the

(non)physical mass matrix for Goldstone bosons, whereas the second part is the physical mass matrix
for the massive Higgs-like scalars. They live actually in orthogonal supspaces. Notice that in the unitary
gauge ξ →∞ the Goldstone’s and the ghosts disappear from the spectrum. In the unitary gauge however,
the massive gauge field propagator is given by (122), which is badly behaved in the UV, making this
gauge unpractical for most quantum computations.

Here are some examples of Higgs boson spectra :
- In the Standard Model with one Higgs doublet, there is one physical real Higgs scalar 4−3 = 1, where
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Fig. 9: A confining force similar to QCD called technicolor could be responsible for electroweak symmetry break-

ing. The electroweak vev is given by a condensate of fermions 〈T̄LTR〉 ∼ v3 = M3
P e
− 3

2b0g2
TC .Taken from [20].

4 is the number of initial real degrees of freedom contained into an SU(2)L scalar doublet, whereas 3 is
the number of broken generators in the Standard Model.
- In the Standard Model with two Higgs doublets (or in the Minimal Supersymmetric Standard Model,
MSSM), there are 8 − 3 = 5 physical Higgs scalars: two neutral scalars h and H0, one pseudoscalar A
and two charge ones H±.
The Higgs mechanism is a elegant and economical way to break electroweak symmetry. However, it has
its own misteries :
- elementary scalars were never observed in nature until july 2012.
- It is difficult to keep a scalar light after quantum corrections (so-called hierarchy problem). We will
come back later on to quantify this problem.

Taken into account these observations, it is reasonable to ask is there are other ways of breaking
a gauge (electroweak for our purposes) symmetry. The answer is yes, there are several other options.
Some popular ones are :
- A new confining force (technicolor) with ΛTC ∼ v. The goldstone bosons "eaten up" by the W and Z
gauge bosons are called "technipions" (see Fig. 9).
- composite Higgs models, in which Higgs is a bound state of fermions. One example is the top-antitop

condensation, where the Higgs is a top-antitop bound-state h = t̄L tR.
- symmetry breaking by boundary conditions in extra-dimensional Kaluza-Klein (string) type theories.
Typically these theories have additional light degrees of freedom below the TeV scale; as such, unlike the
standard Higgs mechanism, they are strongly constrained and they have problems to fit the experimental
data. The recent LHC data on the newly discovered boson, its mass and its couplings point for the
time being into the direction of an elementary scalar degrees of freedom like in the Higgs mechanism
described above. Consequently, the alternatives we just described to the Higgs mechanism are currently
disfavored by the experimental data.
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Fig. 10: Fermi theory of weak interactions: the beta decay n → pe−ν̄e at low energies E << MW can be
described as an effective four-fermion interaction.

6 The electroweak sector of the Standard Model.
6.1 Gauge group and matter content
The Standard model is a "unified" description of weak and electromagnetic interactions. From the Fermi
theory of weak interactions with GF /

√
2 = g2/8M2

w, we know that we need a theory that contains at
least a charged gauge boson W±m and the photon Am.

Experimentally, there also exists neutral currents discovered in 1973, mediated by a neutral mas-
sive gauge boson, and also coloured strong interactions. The SM gauge group is therefore
Gauge bosons : GAm Aam Bm

G = SU(3)c × SU(2)L × U(1)Y .

In addition to the gauge bosons, the SM contains matter fermions and the Higgs field, in the gauge group
representations

Leptons : li =

(
νi
ei

)
L

: (1,2)Y=−1 , eiR : (1,1)Y=−2

Quarks : qi =

(
ui
di

)
L

: (3,2)Y=1/3 , uiR : (3,1)Y=4/3 , diR : (3,1)Y=−2/3

Higgs field : Φ =

(
Φ+

Φ0

)
: (1,2)Y=1 .

In the Standard Model, the Higgs doublet vev breaks the electroweak gauge sector down to the
electric charge SU(2)L × U(1)Y → U(1)Q.
Notice that only left-handed quarks and leptons interact with SU(2)L gauge fields. The SM lagrangian
has the symbolic form8

LSM = Lkin − V (Φ) + LYuk. , (218)

where

Lkin = −1

4
F 2
mn −

1

4
(F amn)2 + |DmΦ|2

+Ψ̄Liγ
mDmΨL + Ψ̄Riγ

mDmΨR , (219)

and

DmΨL = (∂m − ig
τa
2
Aam − ig′

YL
2
Bm)ΨL

DmΨR = (∂m − ig′
YR
2
Bm)ΨR , (220)

whereas the Higgs potential has the form

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 . (221)

8No QCD gluons in what follows. For strong interactions, see the QCD lectures by Stephane Munier.
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The Yukawa sector LYuk. will be discussed later on. With our conventions the electric charge is related
to the third component of the isospin T3 and to the hypercharge Y via

Q = T3 +
Y

2
. (222)

6.2 Weak mixing angles and gauge boson masses
With the help of an SO(4) rotation, the Higgs vev can be written as

Φ =

(
0
v√
2

)
,where v2 =

µ2

λ
' (246 GeV)2 (from experimental data) . (223)

Gauge boson masses arise from the covariant derivative (homework)

|DmΦ|2 → g2v2

8
|A(1)

m − iA(2)
m |2 +

v2

8
|gA(3)

m − g′Bm|2

=
g2v2

4
W+,mW−m +

(g2 + g′2)v2

8
ZmZm ,

where the definitions and the masses of gauge bosons are

W±m =
1√
2

(A(1)
m ∓ iA(2)

m ) , Mw =
gv

2
,

Zm =
gA

(3)
m − g′Bm√
g2 + g′2

, Mz =
v

2

√
g2 + g′2 ,

Am =
g′A

(3)
m + gBm√
g2 + g′2

, MA = 0 . (224)

We now introduce the electroweak angle

cos θw =
g√

g2 + g′2
=
Mw

Mz
, tan θw =

g′

g
, (225)

that rotates from the weak basis to the mass basis(
Zm
Am

)
=

(
cos θw − sin θw
sin θw cos θw

)(
A

(3)
m

Bm

)
. (226)

Notice that the ratio

ρ ≡ M2
w

M2
z cos2 θw

= 1 at tree− level in the SM . (227)

The ρ parameter has quantum corrections in the SM, which are dominated by the top quark. Any ex-
perimental deviation from the SM value is a possible hint of new physics. Conversely, any model of
new physics has to be able to produce a ρ parameter close to one, which is one of the precision tests
of the Standard Model. This is a killer for most proposals of Beyond the Standard Model physics. For
example, technicolor-like theories have difficulties in this respect (although there is no formal proof that
they cannot accomodate precision data). Finally, the definition of the electric charge is e = g sin θw.

The W and Z gauge bosons were discovered in 1983 by the UA1,UA2 collaboration at CERN.
Their masses are MW ' 80.4 GeV, MW ' 91.2 GeV.
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6.3 Neutral and charged currents
The neutral and charged currents are defined as the fermion bilinears coupling to the charged (W )and
neutral (Z) gauge fields. They are worked out starting from the fermionic kinetic terms.
Homework: With the definitions above, show that

Dm = ∂m − igAam
τa
2
− ig′Y

2
Bm = ∂m − ieQAm

− ig

2
√

2
(W+

mτ+ +W−mτ−)− ig

cos θw
Zm(T3 − sin2 θwQ) (228)

The fermionic currents are defined as

L = Ψ̄iiγ
m∂mΨi +

g√
2

(W+
mJ

m,+
W +W−mJ

m,−
W ) +

g

cos θw
ZmJ

m
Z + eAmJ

m
em (229)

Homework : Using the quantum numbers of the quarks/leptons, show that

Jm,+W = ν̄iLγ
meiL + ūiLγ

mdiL (charged current)

Jm,−W = ēiLγ
mνiL + d̄iLγ

muiL ,

Jmem = −ēiγmei +
2

3
ūiγmui − 1

3
d̄iγmdi ,

JmZ = J3
m − sin2θwJ

m
em =

1

2
ν̄iLγ

mνiL + (−1

2
+ sin2 θw)ēiLγ

meiL + sin2 θwē
i
Rγ

meiR

+(
1

2
− 2

3
sin2 θw)ūiLγ

muiL −
2

3
sin2 θwū

i
Rγ

muiR

(−1

2
+

1

3
sin2 θw)d̄iLγ

mdiL +
1

3
sin2 θwd̄

i
Rγ

mdiR

=
1

2

∑
i

Ψ̄iγ
m(giV − giAγ5)Ψi , (neutral current) (230)

where Ψi denote collectively all fermions (quarks and leptons, in Dirac notation) of the Standard Model
and

giV = Ii3 − 2Qi sin2 θW , giA = Ii3 (231)

are the vector and axial fermionic couplings to the Z boson. At low energies E << MW ,MZ , the
exchange of W and Z bosons lead to the Fermi charged current four-fermion interaction, plus a similar
neutral current interaction

LF = −2
√

2GF

[
Jm,+W JWm,− + ρJmZ Jm,Z

]
, (232)

where we defined the parameter ρ =
M2
W

M2
Z cos2 θw

which, as we noticed in the previous paragraph, equals
one at tree-level in the Standard Model and plays an important role in quantum corrections and constraints
on new physics.

The weak interaction experiments allowed the experimental measure of the electroweak angle.
Measure at energies cloze to the Z mass, it equals sin2 θw ' 0.23.

6.4 Fermion masses and the CKM matrix
Dirac mass terms in the SM are not gauge invariant, due to the chiral nature of elctroweak interactions.
We can however write Yukawa-type interactions by using the Higgs field

−LYuk = huij q̄
i
Lu

j
RΦ̃ + hdij q̄

i
Ld

j
RΦ + heij l̄

i
Le

j
RΦ , (233)
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Fig. 11: Diagram leading to proton decay p → π0e+ in unified theories. The superheavy X particle is a GUT
gauge boson.

where : Φ̃ =

(
Φ

0

−Φ
+

)
is the charge-conjugate Higgs field and i, j = 1, 2, 3 are flavor indices. The

Yukawa couplings generate quarks and lepton masses after the electroweak symmetry breaking :

−Lmass = mu
ij ū

i
Lu

j
R +md

ij d̄
i
Ld

j
R +ml

ij ē
i
Le

j
R + c.c. , (234)

where mu,d,l
ij = hu,d,lij v/

√
2. We use in what follows for compactness a matrix notation

−Lmass = ūLm
uuR + d̄Lm

ddR + ēLm
leR + c.c. , (235)

where mu,d,l are 3× 3 mass matrices in the flavor space.
Observation : The SM lagrangian has some automatic (consequences of the gauge symmetries) global
symmetries :

baryon number U(1)B ,

lepton numbers U(1)e , U(1)µ , U(1)τ . (236)

This is actually very fortunate since there are very strong experimental constraints on baryon and lepton
number violating processes, for example :

proton lifetime τp ≥ 1033 years ,

BR(µ→ eγ) < 2.4× 10−12 , BR(µ− → e−e−e+) < 10−10 .

BR(B → Xsγ) ∼ 10−4 ⇒ b→ sγ should be suppressed . (237)

These limits constrain seriously any higher-dimensional operator violating flavor, generated by eventual
new physics. For example, consider the operator

Leff ∼
1

M2
X

(q̄γmu
c
R) (l̄γmdcR) . (238)

Proton stability constrains the mass to be heavier than about⇒MX ≥ 3 × 1016 GeV. There is a
long list of similar effective operators that are tightly constrained by the data. Another simple example
is :

Leff ∼
1

M2
(l̄2γml1) (l̄1γ

ml1) → 1

M2
(µ̄γme) (ēγme) , (239)

that can be generated by a flavor-dependent Z ′ gauge boson. The mass scale M is constrained by the
limits on µ− → e−e−e+ to be heavier than M > 1000 TeV.
It turns out that almost all SM extension generates dangerous FCNC and/or proton decay, unless special
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Fig. 12: Typical diagram in theories with a new neutral gauge boson, generating FCNC at tree-level.

structure.
For example, in MSSM we have to impose
- R-parity
- flavor blindness of soft terms.

Observation: With the field content of the SM, there is no operator generating neutrino masses at
the renormalizable level. The main effective operator in the SM leading to neutrino masses is dimension
five

hνij
M

(l̄ciΦ) (ljΦ) ⇒ mν
ij = hνij

v2

M
. (240)

Tiny values (of order 10−2 eV) neutrino masses ask then for 1012 GeV < M < 1015 GeV . We will
come back in more details to the problem of neutrino masses in Section (11).

Coming back to the quarks and charged leptons masses, we can define the mass eigenstate basis
(as compared to the weak eigenstate basis) with the help of the 3× 3 unitary transformations9

uL,R = V u
L,Ru

′
L,R , dL,R = V d

L,Rd
′
L,R , eL,R = V e

L,Re
′
L,R , (241)

such that
(V u
L )†muV u

R = diag (mu,mc,mt) , etc . (242)

In the mass basis, the neutral and the e.m. currents remain the same. To an excellent approximation,
the neutrinos are massless in which case one is free to perform the same unitary transformation on the
neutrinos as their SU(2)L charged lepton partners νL = V e

Lν
′
L. In the new basis, all SM lagrangian

preserves the leptonic number per species Le, Lµ, Lτ . These conservation laws are indeed observed
experimentally with a great accuracy: no transition of the type µ→ eγ, for example was observed until
now. On the other hand, the story for the quark sector is different. The hadronic charged current becomes

(Jm,+W )quarks →
1√
2
ū′Lγ

mVCKMd
′
L ≡

1√
2
ū′Lγ

md̃L , (243)

9These transformations are not innocent; there is a quantum anomaly that we will discuss later on.
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where VCKM = (V u
L )†V d

L is the (unitary) CKM matrix [29]. We also defined

d̃L = VCKMd
′
L ↔

d̃Ls̃L
b̃L

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

d′Ls′L
b′L

 (244)

There are therefore flavor changing transitions in the SM : s→ uW−, etc. Experimental measurements
give a hierarchical form of VCKM of the type (Wolfenstein parametrization) 1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (245)

where λ = sin θc ' .0.22 is the Cabibbo angle. N. Cabibbo wrote first in 1962 the 2 × 2 version of the
CKM matrix (

cos θc sin θc
− sin θc cos θc

)
. (246)

It is simply to check that, after field redefinitions, VCKM contain three rotation angles and a CP violating
phase10. Notice also that CP violation in the SM is suppressed by λ3 in VCKM .
The unitarity of the CKM matrix

VikV
∗
jk = δij , V ∗kiVkj = δij (247)

has various important consequences. One of them is the GIM mechanism (Glashow-Iliopoulos-Maiani,
1972), to which we will turn soon.

6.5 Higgs couplings
The Higgs mechanism described above is the minimal option, by using only one Higgs doublet Φ. Start-
ing from the Standard Model lagrangian (218), one can easily work out the Higgs boson couplings to
fermions and gauge fields in this gauge, by starting from the unitary gauge, where

Φ =

(
0
v+h√

2

)
. (248)

By replacing this into (218), one finds the Higgs couplings to gauge fields, fermions and itself are

Lhiggs couplings = m2
W (1 +

h

v
)2W+

µ W
µ,− +m2

Z(1 +
h

v
)2ZµZ

µ − 1

2
m2
h(1 +

h

2v
)2h2

−
[
(1 +

h

v
)ūLm

uuR + (1 +
h

v
)d̄Lm

ddR + (1 +
h

v
)l̄mleR + h.c.

]
. (249)

Obviously, the test of the SM nature of the Higgs boson sector is the proportionality between the SM
Higgs boson couplings to the mass of the particles it interacts to. This linear proportionality relation
ceases to be valid if the Higgs sector is non-minimal, containing more doublets or other representations.

Notice also that the diagonalization of the fermion mass matrices in the SM Higgs case diagonalize
simultaneously the Higgs couplings to fermions. There are therefore no flavor transitions mediated for
the minimal case of the SM Higgs doublet, which is very welcome in light of the tight constraints from

10In the case ofN generations, a simple counting predictsN(N −1)/2 rotation angles and (N −1)(N −2)/2 CP violating
phases. In fourth-generation extensions of the Standard Model, we therefore expect new sources of CP violations and apparent
violations of the unitarity of the usual CKM matrix.
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Fig. 13: K0-K̄0 mixing generated at loop level in the Standard Model, with quarks ui = u, c, t running in the
loop.

FCNC processes. It is straightforward to verify that if two Higgs doublets Φ1,Φ2 couple simultaneously
to the same type type of quarks or leptons, like for example

−L′Yuk = q̄iLu
j
R(h1,u

ij Φ1 + h2,u
ij Φ2) , (250)

then generically it is not possible anymore to diagonalize simultaneously the fermion mass matrices and
the fermion couplings to the Higgs scalars. The simplest models with no Higgs-induced FCNC effects
in multi-Higgs extensions of the Standard Model are those for which the three generations of the same
type of quarks (or leptons) couple to just one Higgs doublet. For example for two-Higgs doublet models
H1, H2, such a model contains Yukawas of the type

−LYuk = huij q̄
i
Lu

j
RH2 + hdij q̄

i
Ld

j
RH1 + heij l̄

i
Le

j
RH1 . (251)

6.6 The GIM mechanism
The FCNC (flavor changing neutral currents) effects were measured experimentally to be small. This
was puzzling in the 1970’s, but it was explained in the SM by GIM [23]. Consider for ex. the K0 − K̄0

mixing, which can arise at the loop-level.

The amplitude of the process has the form

AK0K̄0 ∼
g4

M2
W

(
∑
i

VidV
∗
is)(
∑
j

V ∗jsVjd)F (xi, xj) , (252)

where xi =
m2
i

M2
W

and F is a (loop) function depending on the ratio of up-type quark masses and the

W mass. Let us define in what follows ξi = V †siVid. Unitarity of the CKM matrix implies
∑

i ξi = 0.
The computation can be performed in an arbitrary Rξ gauge, taking into account the contribution of
the massive gauge bosons and Goldstone’s in the loop. It turns out however, that due to the good UV
convergence properties and the unitarity of the CKM matrix, it is possible to perform the computation in
the unitary gauge ξ → ∞. To the lowest order in an expansion in the external momenta, the amplitude
of the process in the unitary gauge is

AK0K̄0 =
ig4

2

∑
i,j

ξiξj

∫
d4k

(2π)4

[
ūs,Lγ

α 1

/k −mi
γνud,L

] ηαβ − kαkβ
M2
W

k2 −M2
W

ηµν − kµkν
M2
W

k2 −M2
W

[
v̄s,Lγ

µ 1

/k −mj
γβvd,L

]
.

(253)
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If one neglects the up-quark mass, one can replace∑
i=u,c,t

ξi
1

/k −mi
=
∑
i=c,t

ξi(
1

/k −mi
− 1

/k
) . (254)

After working out the Dirac matrix algebra, one can rewrite the amplitude in the simpler way

AK0K̄0 =
g4

2M2
W

∑
i,j=c,t

ξiξjFij (ūs,Lγ
µud,L) (v̄s,Lγµvd,L) . (255)

where

Fij = iM2
W

∫
d4k

(2π)4

1− 2 k2

M2
W

+ (k2)2

4M4
W

k2(k2 −M2
W )2

m2
i

k2 −m2
i

m2
j

k2 −m2
j

. (256)

An explicit calculation yields for i 6= j the symmetric dimensionless function

F (xi, xj) =
xixj
xi − xj

[
(1− 2xi +

1

4
x2
i )

lnxi
(1− xi)2

+ (i↔ j)

]
− 3xixj

4(1− xi)(1− xj)
(257)

and

F (xi, xi) =
3

2

(
xi

1− xi

)3

lnxi −
xi(4− 11xi + x2

i )

4(1− xi)2
. (258)

In the limit of equal or vanishing quark masses, the amplitude vanishes due to the unitarity of
VCKM :

AK0K̄0 ∼
g4

M2
W

(
∑
i

VidV
∗
is)(
∑
j

V ∗jsVjd)F (x, x) = 0 . (259)

Let us define
FK = (

∑
i

VidV
∗
is)(
∑
j

V ∗jsVjd)F (xi, xj) . (260)

Applying the Wolfenstein parametrization for the CKM matrix and neglecting for simplicity the up-quark
mass, one can write

FK = λ2(1− λ2

2
)2F (xc, xc) + 2A2λ6(1− ρ+ iη)F (xc, xt) +A2λ10(1− ρ+ iη)2F (xt, xt) . (261)

Numerically the main contribution is proportional to g4λ2(m2
c − m2

u)/M4
W and is in good agreement

with the experimental result. The CP violation in the amplitude comes from a virtual propagator of the
top quark. The Feynman diagram for the K0 − K̄0 mixing can also be expressed as a dimension-six
operator

L∆S=2
eff. =

GF√
2
g2

2(d̄LγmsL)(d̄Lγ
msL)FK . (262)

The mass difference between the physical mass eigenstates is then equal to

δmK = −2 Re 〈K0|L∆S=2
eff. |K̄0〉 =

GF√
2
g2

2 Re 〈K0|(d̄LγmsL)(d̄Lγ
msL)|K̄0〉FK . (263)

The original computation [32] used the vacuum saturation approximation

〈K0|(d̄LγmsL)(d̄Lγ
msL)|K̄0〉 ' 〈K0|(d̄LγmsL)|0〉〈0|(d̄LγmsL)|K̄0〉 (264)

and the pseudo-Goldstone relation

〈K0(p)|(d̄LγmsL)|0〉 = pm
fK√
2mK

, (265)
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Fig. 14: The unitarity triangle. From [31].

similar to (159), fK is the Kaon decay constant. Due to strong interaction effects, today one simply adds
a fudge factor to the amplitude called BK . One therefore finds

δmK =
GF√

2
BKf

2
KmKFK , (266)

A similar analysis can be applied to the B0 − B̄0 mixing. The result is

FB = A2λ6F (xc, xc) + 2A2λ6(1− ρ+ iη)F (xc, xt) +A2λ6(1− ρ+ iη)2F (xt, xt) . (267)

In this case, it is the top quark contribution which dominates the mass difference.

Historical Remark : In 1972, only the u, d and s quarks were known. The GIM mechanism is
considered to be the first convincing proof of the existence of the charm quark.

Homework : Write down explicitly the diagrams for the K0 − K̄0 mixing in the two generation
case, with u and c quarks in the loop.

The unitarity relation
VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (268)

can be represented geometrically as a triangle in a plane⇒ unitarity triangle. It is customary to rescale
the length of one side, i.e. |VcdV ∗cb| (well-known), to 1 and to align it along the real axis. The angles are
defined as

β = arg(−
VtdV

∗
tb

VcdV
∗
cb

) , γ = arg(−
VudV

∗
ub

VcdV
∗
cb

) (269)

and the lengths are

Rt = |
VtdV

∗
tb

VcdV
∗
cb

| , Ru = |
VudV

∗
ub

VcdV
∗
cb

| . (270)

On the other hand, quarks, leptons masses and the CKM matrix feature strong hierarchies. For
example, from neutrino masses to the top mass there are 1011 orders of magnitude mν ∼ 10−2 eV <<
me = 0.511 MeV << mt ∼ 172 GeV !
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There is no hint for a solution of this flavor puzzle in the SM, since the Yukawa couplings are
free-parameters and therefore are not predicted. We are clearly missing something : maybe an addi-
tional global or gauge symmetry [30] or maybe this comes from an extra dimensional localization or
environmental selection.

6.7 The custodial symmetry
The tree-level relation ρ = M2

W /(M
2
Z cos2 θw) = 1 can be understood as the result of an (approximate)

symmetry, called custodial symmetry, proven by Sikivie,Susskind,Voloshin and Zakharov [33] .
Theorem : In any theory of electroweak interactions which conserves the electric charge and has an
approximate global SU(2) symmetry under which Aam transform as a triplet, ρ = 1 at tree-level.
Here approximate means in the limit of zero hypercharge coupling g′ = 0 and in the absence of the
Yukawa couplings.

Proof: Under the assumptions above, the gauge boson mass matrix is of the form
M2 0 0 0
0 M2 0 0
0 0 M2 m2

1

0 0 m2
1 m2

2

 . (271)

The masslessness of the photon implies M2m2
2 −m4

1 = 0. The resulting W3 − A mass matrix, written
in terms of the W and Z masses, is then of the form : M2

W ±MW

√
M2
Z −M2

W

±MW

√
M2
Z −M2

W M2
Z −M2

W

 . (272)

It is then easy to check that MW = cos θwMZ .

On the other hand, in the SM the Higgs potential V (Φ†Φ) is invariant under an SO(4) global
symmetry. Indeed, let us write explicitly the four real components of the SM Higgs doublet

Φ =

(
Φ1 + iΦ2

Φ3 + iΦ4

)
, then Φ†Φ =

4∑
i=1

Φ2
i . (273)

It is then transparent that the Higgs potential and kinetic term have an SO(4) = SU(2)L × SU(2)R
symmetry. The Higgs vev

Φ =

(
0
v√
2

)
breaks SO(4)→ SO(3) = SU(2)D , (274)

which corresponds precisely to the custodial symmetry. From these considerations, it is clear that not
any Higgs representations preserve the custodial symmetry.
What happens for other Higgs representations ? It can be shown that, considering Higgs representations
in weak isospin representations of isospin I , the rho parameter is given by

ρ =
1

2

∑
i(Ii(Ii + 1)− I2

3i) |〈0|φi|0〉|
2∑

i I
2
3i |〈0|φi|0〉|

2 . (275)

It is then easy to check that for an arbitrary number of singlet and higgs doublets, ρ = 1. On the other
hand, for Higgs triplets for example, the higgs vev generate the breaking SO(3) → SO(2). In this case
there is no custodial symmetry and ρ 6= 1.
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Strong interactions preserve electric charge and strong isospin. A natural choice for the custodial
symmetry is therefore the strong isospin, which then guarantees that ρ = 1 to all order in the strong
interactions.

A useful parametrization for estimating the violation of the custodial symmetry is :

H =
(
iτ2Φ∗ Φ

)
=

(
Φ∗0 Φ+

−Φ∗+ Φ0

)
, Φ†Φ =

1

2
TrH†H . (276)

V (Φ†Φ) is invariant under H → ULHU †R, with UL,R being 2 × 2 unitary matrices implementing
SU(2)L × SU(2)R transformations. The electroweak symmetry breaking pattern is then

〈H〉 =
v√
2
I2×2 breaks SU(2)L × SU(2)R → SU(2)D . (277)

As anticipated, the hypercharge gauge interactions U(1)Y and Yukawa couplings break the custodial
symmetry. However the particular coupling

LYuk = h
(
t̄L b̄L

)
H
(
tR
bR

)
(278)

is invariant under SU(2)D. This corresponds to the limit of equal masses in the quark doublet ht = hb.
On the other hand, W and Z boson masses have quantum corrections that lead to calculable deviations
from ρ = 1. This can be understood as quantum corrections that change the mass matrix (271) to

M̃2 0 0 0

0 M̃2 0 0

0 0 M̃2
3 m̃2

1

0 0 m̃2
1 m̃2

2

 , (279)

where M̃2 = M2 +δM2, etc, δM2 being the quantum correction to the corresponding mass. The break-
ing of the custodial SU(2) symmetry in the gauge mass matrix by quantum corrections is an important
test of the quantum structure of the Standard Model. A recomputation of the ρ parameter in this case
gives

ρ =
M̃2

M̃2
3

= 1 − i

M2
W

[Π++ −Π33] (0) , (280)

where the mass difference between the charged and the neutral gauge fields component is computed from
the vacuum polarization at zero momentum

(Πµν
++ −Πµν

33 )(0) ≡ ηµν(Π++ −Π33)(0) = iηµν(M̃2 − M̃2
3 ) . (281)

Here we defined the vacuum polarization tensor starting from the inverse gauge boson propagator

D−1
mn(q) = D−1

0,mn(q)−Πmn(q) . (282)

Using the expression of the free gauge-field propagator

D−1
0,mn(q) = i

[
ηmn(q2 −M2)− (1− 1

ξ
)qmqn

]
, (283)

and defining in the case of SU(2) gauge group Πmn
ij (0) = ηmnΠij(0), one finds

D−1
mn(0) = −iηmn

[
M2 − iΠ(0)

]
, (284)
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therefore one can indeed identify the gauge boson mass corrections as δM2
ij = −iΠij(0). In the SM, the

leading quantum contributions comes from the third generation of quarks. The one-loop expressions for
the relevant vacuum polarization diagrams are

Πmn
++ = −3(

ig√
2

)2

∫
d4k

(2π)4
Tr

[
γm

1− γ5

2

i

/k −mt
γn

1− γ5

2

i

/k −mb

]
,

Πmn
33 = −3(

ig

2
)2

∫
d4k

(2π)4
Tr

[
γm

1− γ5

2

i

/k −mt
γn

1− γ5

2

i

/k −mt

]
+ (t↔ b) . (285)

An explicit evaluation of the relevant traces give

Πmn
++ =

3g2

2
ηmn

∫
d4k

(2π)4

k2

(k2 −m2
t )(k

2 −m2
b)
,

Πmn
33 =

3g2

4
ηmn

∫
d4k

(2π)4

(
k2

(k2 −m2
t )

2
− k2

(k2 −m2
b)

2

)
. (286)

After a Wick rotation and and explicit evaluation of the (UV finite) integral, one finds the final
result [35]

δρ =
3g2

64π2M2
W

[
m2
t +m2

b −
2m2

tm
2
b

m2
t −m2

b

ln
m2
t

m2
b

]
− 3g′2

32π2
ln
mH

MZ
+ · · · (287)

Notice that the first term on the rhs vanishes in the custodial limit mt = mb, as expected. The · · · in
(287) are subleading contributions from the SM or from eventual new physics contributions that have to
be smaller than 10−3 in order to fit the experimental data [34].

7 Quantum corrections and renormalization.
Quantum corrections through loops are subtle to incorporate, due to UV divergences appearing for large
momenta of virtual particles running in the loops. Dealing with these divergences is crucial in order to
extract physical results. This led to the program of renormalization, which was brilliantly confirmed by
various precision measurements, in particular at the LEP collider. The proof of renormalization of the
Standard Model led to the 1999 Nobel prize of G. ’t Hooft and M. Veltman [36].

7.1 UV divergences and regularization.
Perturbation theory in Quantum Field Theory is plagued with UV divergences. We have to keep an UV
cutoff Λ (which can be implemented in various different ways) in computing physical quantities. There
are three cases that arise :
- Super-renormalizable theories : In this case only a finite number of Feynman diagrams diverge. Beyond
a sufficiently large number of loops, all Green functions are finite.
- Renormalizable theories : a finite number of amplitudes/Green functions diverge, with a number of
external legs below a maximal value ( which is for example four for the φ4 theory, three for QED and
four for Yang-Mills theories). For these amplitudes, the UV divergences arise at all orders in perturbation
theory.
- Non-renormalizable theories : All amplitudes, with an arbitrary number of legs are UV divergent at a
certain order in perturbation theory.

In renormalizable and super-renormalizable theories, UV divergences can be absorbed into rescal-
ing of fields and redefinitions of the various couplings and masses. Taking the couplings/masses from
experimental data and "hiding" the UV cutoff in their redefinitions, we obtain physical quantities free of
UV divergences. In this case, the theory is predictive at any energy scale.
In non-renormalizable theories, we need an infinite number of couplings and masses in order to absorbe
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the UV divergences. We would need an infinite amount of experimental data to determine all these cou-
plings. Therefore, at high-energiesE > Λ the theory looses its predictive power. However, at low-energy
the theory is perfectly predictive. The typical example of this type is the General Relativity.

7.2 Relevant, marginal and irrelevant couplings
Consider a scalar theory of the form

SΛ =

∫
d4x

(
1

2
(∂φ)2 +

m2φ2

2
+
∑
n

λnφ
n

)
, (288)

where SΛ is the euclidian action defined with a cutoff Λ. The couplings λn have (classical) mass dimen-
sions [λn] = 4− n. Let us consider the theory with two different maximal euclidian cutoff momenta :
i) 0 < p < Λ
ii) 0 < p < Λ′ = ε Λ , where ε < 1.
In case ii) the theory has therefore a lower cutoff and it is interpreted as a theory where the high-momenta
of theory i) were integrated out. The theory i) has the action (288). In the theory ii) the cutoff can be
redefined to be the same as in i) with the help of a scale transformation

x′ = ε x , p′ = ε−1p , φ′ = ε−1φ . (289)

In terms of the rescaled field and coordinates, the action of theory ii) become

SΛ′ =

∫
d4x′

(
1

2
(∂′φ′)2 +

m′2(φ′)2

2
+
∑
n

λ′n(φ′)n

)
, (290)

where
m′2 =

1

ε2
m2 , λ′n = εn−4 λn . (291)

Notice that the new mass and couplings scale with their classical dimension. We see therefore that the
mass and couplings with positive dimension grow in the IR, whereas couplings with negative dimension
decrease in the IR. It is said that

[λn] > 0 ⇒ relevant couplings ,

[λn] = 0 ⇒ marginal couplings ,

[λn] < 0 ⇒ irrelevant couplings . (292)

This point of view on renormalization was introduced by K. Wilson and is summarized, for example,
in [37].

7.3 (Non)renormalizability and couplings dimensions.
There is a straight connection between renormalizability and the three type of couplings previously de-
fined :
- relevant couplings ⇒ super-renormalizability.
- marginal couplings ⇒ renormalizability.
- irrelevant couplings ⇒ non-renormalizability.
It is easy to argue for this by dimensional arguments. Let us consider some simple examples, going back
in Minkowski space :
a) - Relevant coupling

L =
1

2
(∂φ)2 − m2φ2

2
− λ3φ

3 . (293)
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The coupling has dimension [λ3] = +1, so it is relevant. At one-loop, the UV divergent terms lead to
new terms in the lagrangian (homework:)

δL1 ∼ λ3Λ2φ+ λ2
3φ

2 ln Λ , (294)

which are both of super-renormalizable type. The first leads to a scalar tadpole, whereas the second leads
to a mass renormalization. At two loops, the only UV divergences are a cosmological constant and a
scalar tadpole. At three loops, there is only a log UV divergence in the cosmological constant. No UV
divergences exist at higher loops.
Dimensional argument : By dimensional analysis, the highest UV divergent term in the coupling is the
three-loop vacuum energy

λ4
3 ln Λ . (295)

Higher loops have higher powers in λ3 and cannot contribute to the UV divergent terms in the effective
lagrangian.
Observation: 1/m2 terms are IR, not UV contributions, so they cannot appear in UV divergent terms.
b) - Irrelevant coupling

L =
1

2
(∂φ)2 − m2φ2

2
− λ6φ

6 . (296)

The coupling has dimension [λ6] = −2, so it is irrelevant. At one-loop, the UV divergent terms in the
eight-point amplitude lead to (homework) :

Γ
(8)
1−loop(pi) ∼ c λ2

6 ln Λ + · · · . (297)

To cancel this divergence, one has to add a new coupling to the original action

δL1 ∼ λ8 φ
8 , (298)

and to adjust the coupling λ8 such that

λ8 + c λ2
6 ln Λ = finite . (299)

At two-loops, we get new new UV divergences, like the one in the six-point amplitude, proportional to

Γ
(6)
2−loops(pi) ∼ c′ (pipj) λ

2
6 ln Λ , (300)

which can be canceled by adding another coupling

δL2 ∼ λ′8 φ
4(∂φ)2 , (301)

such that
λ′8 + c′ λ2

6 ln Λ = finite . (302)

The UV divergences proliferate at higher loop orders, generating an infinite tower of operators of higher
and higher dimension.
Dimensional argument: Terms of the type λn6φ

4+2n ln Λ, λn6 (∂φ)2φ2n ln Λ have the correct dimension
to be generated for any n. Predictivity at high-energy is lost. Let us however define λ6 ∼ 1/M2. Then :
In the IR E < M , the effect of non-renormalizable operators on physical quantities is proportional to
some positive power or E/M and/or m/M , so their effects is negligible.
Effective theories with cutoff Λ (ex. General relativity, Λ = MP ) are therefore predictive at energies
E << Λ.

Another viewpoint on this problem is the following: for Lint =
∑

n λnφ
n, the leading cross-

section for 2→ 2 particle scattering is

σ =
∑
n

cnλ
2
nE

2n−10 ∼ 1

E2

∑
n

cn(
E

M
)2n , (303)

for λn ∼ 1/Mn−4. Therefore the predictive power is lost for E ≥M .
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7.4 Coupling constant renormalization for φ4 theory.
Consider the φ4 theory of lagrangian

L =
1

2
(∂φ)2 − m2

0

2
φ2 − λ0

4!
φ4 . (304)

Let us compute the four-point function at one-loop. By using the Feynman rules for the φ4 theory, we
find, according to the figure in the next page

Γ(4)(k1k2k3k4) = −iλ0 +
(−iλ0)2

2
×∫

d4p

(2π)4

i

p2 −m2
0

i

(p− k1 − k2)2 −m2
0

+ two crossing terms . (305)

After the Wick rotation to euclidian momenta, the result is given by

Γ(4)(k1k2k3k4) = −iλ0 +
iλ2

0

2

∫
d4p

(2π)4

1

p2 +m2
0

1

(p− k1 − k2)2 +m2
0

+ two crossing terms . (306)

The integral is log divergent in the UV. There are various ways to "renormalize" the integral. Here is a
simple way. Define

V (s) ≡
∫

d4p

(2π)4

1

p2 +m2
0

1

(p− k1 − k2)2 +m2
0

=

∫ Λ

p2≥µ2

d4p

(2π)4

1

p4
+ finite , (307)

where the energy scale µ is arbitrary. We find ( homework)

Γ(4)(k1k2k3k4) = −iλ0 +
iλ2

0

2
[V (s) + V (t) + V (u)]

= −iλ0 +
3iλ2

0

16π2
ln

Λ

µ
+ finite = −iλ(µ) + finite . (308)

What is the physical interpretation of this manipulation ? We can separate the answer into two separate
steps:

i) λ0 is not a physical parameter. It can be chosen to depend on Λ such that

λ(µ) = λ0(Λ)− 3λ2
0

16π2
ln

Λ

µ
(309)

is independent of Λ.
ii) Any value of µ leads to the same physical result. We can find a differential equation for λ by using
the fact that λ0 is independent of µ. We obtain

dλ

d lnµ
=

3λ2

16π2
= β(λ) , (310)

which is called the renormalization group equation (RGE) of λ at one-loop, with β(λ) = 3λ2

16π2 being the
one-loop RG beta function coefficient. The solution of (325) is ( homework)

λ(µ) =
λ(µ0)

1− 3λ(µ0)
16π2 ln µ

µ0

. (311)
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+
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Fig. 15: Diagrams contributing to the renormalization of the self-coupling λ in φ4 theory.
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7.5 Bare parameters versus counterterms
Notice that there is an equivalent viewpoint to the renormalization procedure just described : to "add" a
local "counterterm" to the lagrangian

Lr + δL = L , (312)

to cancels the UV divergence. In order to illustrate the procedure, let us consider again the φ4 theory of
lagrangian (304). When computing the propagator of the scalar field, the residue of the propagator at the
pole Z, called wave function renormalization, defined as∫

d4x eipx 〈0|Tφ(x)φ(0)|〉 =
iZ

p2 −m2
+ terms regular at p2 = m2 (313)

is usually divergent. We can then define a "renormalized" field with unit residue, via φ = Z1/2φr, such
that the lagrangian (304) becomes

L =
1

2
Z(∂φr)

2 − Zm2
0

2
φ2
r −

Z2λ0

4!
φ4
r . (314)

One can avoid talking about bare parameters by splitting the lagrangian into a "renormalized" lagrangian
and "counterterms

L =
1

2
(∂φr)

2 − m2

2
φ2
r −

λ

4!
φ4
r

+
1

2
δZ(∂φr)

2 − δm2

2
φ2
r −

δλ

4!
φ4
r , (315)

where
δZ = Z − 1 , δm2 = Zm2

0 −m2 , δλ = Z2λ0 − λ . (316)

The counterterms in the second line are treated as interactions in perturbation theory and are in order to
satisfy some "renormalization conditions". In the case at hand, they can be defined as

Γ(2)(p2 = m2) = 0 ,
∂Γ(2)

∂p2
(p2 = m2) = 1 ,

Γ(4)(s = 4m2, t = u = 0) = −iλ . (317)

Once renormalization conditions are imposed, counterterms are determined and any divergences are
eliminated; physical results expressed in terms of physical parameters are UV finite. This viewpoint
is called renormalized perturbation theory, whereas the previous approach with bare parameters could
be called bare perturbation theory. In analogy with the bare parameters viewpoint, there is no unique
definition of the renormalized coupling λ. Another example of definition could be

Γ(4)(s = t = u = 4m2/3) = −iλ′ . (318)

The ambiguity in defining λ is precisely the one leading to the RGE mentioned previously.

The two points of view on renormalization lead to identical results, of course, since they are
actually two different interpretations of the same procedure. In renormalizable theories, a finite number
of counterterms are needed in order to render the theory UV finite. For the same purpose, in non-
renormalizable theories we need an infinite number of counterterms.

51



7.6 Quantum corrections to scalar mass
Let us now discuss a very delicate point, quantum corrections to a scalar mass, again in the φ4 theory.
We now denote bym0 the mass parameter in the lagrangian. We want to evaluate the quantum correction
to the mass

m2 = m2
0 + i Σ , (319)

where Σ is the (appropriately defined) quantum correction to the two-point Green function

G(p) = DF (p) + DF (p) Σ DF (p) +DFΣ DF (p)Σ DF (p) · · ·

=
DF

1− Σ DF
=

i

p2 −m2
0 − iΣ

. (320)

After the Wick rotation to euclidian momenta and at one-loop, Σ equals

Σ =
1

2
(−iλ)

∫
d4p

(2π)4

i

p2 −m2
0 + iε

. (321)

Let us evaluate the result with an euclidian momentum cutoff 0 < p2
E < Λ2. The result is

iΣ =
λ

32π2

∫ Λ2

0
dp2

E

p2
E

p2
E +m2

0

=
λ

32π2

(
Λ2 −m2

0 ln
Λ2

m2
0

)
. (322)

The one-loop quantum-corrected mass is therefore

m2 = m2
0 +

λ

32π2

(
Λ2 −m2

0 ln
Λ2

m2
0

)
≡ m2

0 + δm2 . (323)

Whereas the cutoff is unphysical for a fundamental theory, it is widely believed, in analogy with the
cutoff interpretation in statistical mechanics, that a quantum computation is valid up to the energy scale
where new physics appears. The mass of the scalar Higgs particle in the Standard Model was recently
measured at LHC to be around 125 GeV. Since in the SM m2

h = 2λv2 and v is known, it means LHC
measured the self-coupling λ. If the scale of new physics is Λ is very large, quantum corrections to the
mass are also large. In the table below, we display the order of magnitude of quantum corrections to the
scalar mass for a low and a high new physics scale Λ. If the quantum corrections are much larger than
the physical mass, then there should be a delicate tuning between the bare mass m0 and the quantum
correction. Although there is no inconsistency if this would happen, this fine-tuning is considered to be
unlikely to happen in nature.

Λ 10 TeV 1016 GeV

δm2 (TeV)2 1015 GeV

In case of theories where the electromagnetic, weak and strong interactions are unified at a high energy
scale Λ ∼ 1016 GeV, the fine-tuning is of order 10−30 ! This is the so-called high-hierarchy problem of
the Higgs mass in the Standard Model and is one of the main reasons to search for new physics in the
TeV range.

Let us contrast this situation to the one of the electron (or any other fermion) mass in QED, of
massM . The quantum correction in QED with the electron/positron and the photon turns out to be given
by

δM =
3α

4π
M ln

Λ2

M2
. (324)

There is a major difference compared to the quantum correction to a scalar mass : the correction is
proportional to the original mass itself and only logarithmically dependent on the cutoff. Even if the
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electron mass is tiny and even for a very large cutoff, the correction is always small in a perturbative
theory. The tuning mentioned above for a scalar mass does not therefore exists for a fermion mass. The
reason for this difference is that in the massless limit, the fermion acquires an additionl symmetry, the
axial symmetry introduced in (85),(86). The axial symmetry forces quantum correction to vanish in the
massless limit and protects the electron (fermion) mass from quantum corrections from any large mass
scale. In this sense, small fermion masses are natural, whereas small scalar masses are not and lead to
the hierarchy problem in the Standard Model.

7.7 Renormalization group and running of couplings
In concrete perturbation theory computations at n-loops for a field theory with coupling g, the result
contain the appropriate factor αn, where α = g2/(4π), but actually there are logarithmic factors and
there can be up to n logarithmic factors ln q2

m2 , where q is the typical momentum and m some physical
mass. More precisely, there are of factors of the type(

α

4π
ln

q2

m2

)n
. (325)

Such factors invalide perturbation theory when α
4π ln q2

m2 is large, which can happen even if α is small for
q >> m or q << m. This problem also arises in massless theories like for example Yang-Mills theories,
in which the mass m is replaced with some renormalization mass scale µ. The solution to such problems
is the introduction of coupling constants g(µ) depending on the apriori arbitrary renormalization scale
µ, chosen inteligently in order to minimize the effects of such logarithms, i.e. µ ∼ E, where E is the
typical energy scale of the process under consideration. We can then do perturbation theory as long as
g(µ) are small. In a certain precise sense, these large logarithms are resummed by defining the running
couplings g(µ), which are commputable in a sense to be defined below.

Let us consider an n-point Green function that appears in computations of physical obervables

G(n)(pi, g,m, µ) = Z
n
2 G(n)(pi, g0,m0,Λ) . (326)

The left-hand side contains the renormalized n-point Green function depending on the renormalization
scale µ which is independent on the cutoff Λ. On the other hand, in the right-hand side sits the unrenor-
malized Green function depending on the cutoff Λ, which known nothing about the renormalization scale
µ. In a renormalizable theory, the two are proportional, with a proportionality factor given by the appro-
priate power of the wave function renormalization Z. Since the unrenormalized function is independent
on the sliding scale µ, one can write

µ
d

dµ
G(n)(pi, g0,m0,Λ) = 0→

(
µ
∂

∂µ
+ β(g)

∂

∂g
+ γm(g)m

∂

∂m
+ nγ(g)

)
G(n)(pi, g,m, µ) = 0 ,

(327)
where

β(g) = µ
∂g

∂µ
, γm(g) = µ

∂ lnm

∂µ
, γ(g) =

1

2
µ
∂ lnZ

∂µ
. (328)

The eqs. (327) satisfied by the renormalized Green functions are called Callan-Symanzik equations [39].
The role of the functions β, γm and γ will be transparent soon. In general they will also depend on ratios
m/µ, but in some renormalization schemes (minimal subtraction) they depend only on the dimensionless
couplings g. Let us now scale the external momenta ∂i → λpi, that we will use in order to study the
asymptotic behaviour of the Green functions. If D is the canonical dimension of G(n), then by using
Euler theorem for homogeneous functions one gets(

λ
∂

∂λ
+m

∂

∂m
+ µ

∂

∂µ
−D

)
G(n)(λpi, g,m, µ) = 0 . (329)
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By combining (328) and (329), one obtains(
−λ ∂

∂λ
+ β(g)

∂

∂g
− (1− γm(g))m

∂

∂m
+ nγ(g) +D

)
G(n)(λpi, g,m, µ) = 0 . (330)

Equation (330) allows to find the asymptotic behaviour of the Green functions. For this, one introduce
the λ-dependent functions ḡ(λ, g) and m̄(λ, g) satisfying the equations

λ
∂ḡ

∂λ
= β(ḡ) , λ

∂m̄

∂λ
= [γm(ḡ)− 1]m̄ . (331)

and the boundary condition ḡ(1, g) = g, m̄(1,m) = m. It can be shown that ḡ and m̄ satisfy the
differential equations[

λ
∂

∂λ
− β(g)

∂

∂g

]
ḡ(λ, g) = 0 ,

[
λ
∂

∂λ
+ (1− γm)m

∂

∂m

]
m̄(λ,m) = 0 . (332)

With the help of these momentum-dependent couplings, the Green functions for rescaled momenta can
be expressed as

G(n)(λpi, g,m, µ) = λD en
∫ lnλ
0 d lnλ′γ(ḡ) G(n)(pi, ḡ, m̄, µ) . (333)

The large logarithms are summed efficiently if, for momenta λpi, the renormalization scale µ is chosen
µ ∼ λE. The "running" coupling ḡ and masses m̄ are obtained by consistently integrating out the RG
eqs. (332) from the energy E characteristic of the process with external momenta pi to the energy λE
characteristic of the process with external momenta λpi. They are therefore the appropriate quantities
to be used, in order to (significantly) improve perturbation theory computations, for the processes with
external momenta λpi.

7.8 QED and the running of fine structure constant
We use here the counterterm method for the renormalization of QED. In this case, the initial lagrangian,
the counterterms and their sum is

L = −1

4
F 2
mn + Ψ̄(iγm∂m − qγmAm −M)Ψ ,

δL = −1

4
(Z3 − 1)F 2

mn + (Z2 − 1)Ψ̄iγm∂mΨ ,

−(Z1 − 1)qΨ̄γmAmΨ− (ZM − 1)MΨ̄Ψ ,

L0 = L+ δL = −1

4
(F 0

mn)2 + Ψ̄0(iγm∂m − q0γ
mA0

m −M0)Ψ0 . (334)

The relations between the bare and renormalized quantities are then

A0
m = Z

1/2
3 Am , Ψ0 = Z

1/2
2 Ψ ,

M0 =
ZM
Z2

M , q0 =
Z1

Z2Z
1/2
3

q , (335)

where Z1 comes from the one-loop vertex correction, Z2 (Z3) is the fermionic (photon) wave function
renormalization, whereas ZM is the mass renormalization. In QED it can be shown that Z1 = Z2, the
so-called Ward identity. Then charge renormalization in QED comes only from vacuum polarization
q0 = Z

−1/2
3 q. The RG running can be found from

µ
∂

∂µ
q0 = 0 ⇒ β(q) = µ

∂q

∂µ
= q

∂ lnZ
1/2
3

∂ lnµ
. (336)
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Fig. 16: Screening of electric charges by vacuum polarization provides an intuitive picture of the "running" of
electric charge. Figure taken from [38].

By an explicit computation in QED with just the electron in the loop and by defining the fine-structure
constant α = q2/(4π), we find

Z3 = 1− α

3π
ln

Λ

µ
+ finite , (337)

where µ is an arbitrary, renormalization scale. We then find

β(q) =
q3

24π2
⇒ 1

α(Q)
=

1

α(µ)
− 1

3π
ln
Q

µ
. (338)

We found therefore that the fine structure coupling increases with energy ! This can be intuitively inter-
preted due to the screening of the electric charge by electron-positron pairs from the quantum vacuum
(see Figure 16). Experimentally, if at low energies α(0) ∼ 1/137, it was measured, in the sense de-
scribed above, that the running electromagnetic coupling for energiesof the order of the MZ mass is
indeed larger, α(MZ) ∼ 1/128.

The situation for the strong coupling α3 is different due to the non-abelian nature of the interaction.
The result is an anti-screening due to gluon self-interactions [40].

There is a tantalizing hint of unification of gauge couplings at high-energy, as seen from figure 17,
that could point towards a unified gauge structure at high-energy [41]. Running couplings and renormal-
ization are important everywhere in the SM and its applications. For example :
• In any process the couplings have to be evaluated at the relevant energy scale. Ex :
- In π0 → γγ, the fine-structure constant has to be evaluated at the pion mass α(mπ).
- Identification of relevant momenta and RGE of operators in QCD is crucial in order to extrapolate per-
turbative quantities down in energy via the renormalization group.
• In the study of electroweak baryogenesis, for example the scalar potential

V (Φ) ' − µ2(〈Φ〉|)|Φ|2 + λ(〈Φ〉) |Φ|4 (339)

is to be evaluated at the minimum at the scalar potential.

8 Global and gauge anomalies
Let us consider a Dirac fermion coupled to a U(1) gauge field

L = Ψ̄iγmDmΨ−MΨ̄Ψ . (340)

In the massless limit M → 0, the model has a vector and an axial symmetry U(1)V × U(1)A. The
corresponding Noether currents

Jm = Ψ̄γmΨ , J5
m = Ψ̄γmγ5Ψ (341)
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Fig. 17: Extrapolation of gauge couplings in the (minimal supersymmetric extension) of the Standard Model
(figure taken from [42]) : hint of unification of couplings at high energy ?

Fig. 18: Adler-Bell-Jackiw triangle anomalies.

satisfy classically
∂mJm = 0 , ∂mJ5

m = 2iMΨ̄γ5Ψ . (342)

At the quantum level, these conservation laws are modified. It was shown in [24] that even in the massless
limit it is not possible to preserve simultaneously the vector and the axial symmetry, due to subtleties
coming from triangle graphs, see fig. (18).

8.1 Triangle anomalies: the general computation
In what follows we follow closely [6] and we study the quantum anomaly in a system of left-handed and
right-handed fermions coupled to gauge fields via the current

Jµa = ψ̄Lt
L
a γ

µψL + ψ̄Rt
R
a γ

µψR . (343)
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We will use a basis for the fermions so that they are all left-handed. In four dimensions this can
always be done with the help of the charge-conjugation matrix C. Indeed, if χ is a Dirac fermion, 1−γ5

2 χ

projects into left-handed components in the representation (1/2, 0) of the Lorentz group, whereas 1+γ5
2 χ

projects into right-handed components in the Lorentz group representation (0, 1/2) . We will package
both of them into a single spinor ψ with all components into the representation (1/2, 0), which is of the
type

ψ =

( 1−γ5
2 χ

1−γ5
2 χc

)
(344)

where χc = Cχ̄T is the charge-conjugated spinor.

The associated generator (charge operator for U(1) symmetries) for the gauge field Aaµ is denoted
by Ta. We define the various symmetry currents as

Jµa = ψ̄Taγ
µψ (345)

where the symmetry generator Ta acts on the packaged left-handed spinor ψ as the matrix block

Ta =

(
tLa 0
0 −(tRa )?

)
=

(
tLa 0
0 −(tRa )T

)
, (346)

where for a given Dirac fermion χ the symmetry generators are defined through the infinitesimal trans-
formation

δχ = iαa

[
1− γ5

2
tLa +

1 + γ5

2
tRa

]
χ . (347)

The three-current correlator we will study is

Γµνρabc (x, y, z) = 〈0|T (Jµa (x)Jνb (y)Jρc (z))|0〉 . (348)

For conserved currents, the naive Ward identity for the divergence of such a correlator is

∂µΓµνρabc (x, y, z) = +ifabdδ
4(x−y)〈0|T (Jνd (y)Jρc (z))|0〉+ifacdδ4(x−y)〈0|T (Jνb (y)Jρd (z))|0〉 , (349)

where fabc are the group structure constants. The leading contribution at one loop emerges from fermions
going around the loop. The total contribution is obtained by summing over all relevant fermion fields.

There are two diagrams for the correlator that can be evaluated to yield

Γµνρabc (x, y, z) = Tr [SF (x− y)Tbγ
νPLSF (y − z)TcγρPLSF (z − x)Taγ

µPL]

+Tr [SF (x− z)TcγρPLSF (z − y)Tbγ
νPLSF (y − x)Taγ

µPL] (350)

with

PL =
1− γ5

2
, SF (x) =

∫
d4p

(2π)4

i/p

p2 + iε
eip·x . (351)

Substituting one obtains

Γµνρabc (x, y, z) = −i
∫

d4k1

(2π)4

d4k2

(2π)4
e−i(k1+k2)·x+ik1·y+ik2·z

∫
d4p

(2π)4
× (352){

Tr

[
/p− /k1 + /a1

(p− k1 + a1)2 + iε
γν

/p+ /a1

(p+ a1)2 + iε
γρ

/p+ /k2 + /a1

(p+ k2 + a1)2 + iε
γµPL

]
tr[TbTcTa] +

+Tr

[
/p− /k2 + /a2

(p− k2 + a2)2 + iε
γρ

/p+ /a2

(p+ a2)2 + iε
γν

/p+ /k1 + /a2

(p+ k1 + a2)2 + iε
γµPL

]
tr[TcTbTa]

}
.

We have shifted the integrated momentum in the two diagrams using two vectors a1,µ and a2,µ. This
reflects an ambiguity of the triangle graph, even if the integrals are actually convergent, and translates
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into the definition of the associated current operators, corresponding to a certain freedom to move the
anomaly from one current to another. By using the identities

/k1 + /k2 = (/p+ /k2 + /a1)− (/p− /k1 + /a1) = (/p+ /k1 + /a2)− (/p− /k2 + /a2) , (353)

one finds

∂µΓµνρabc (x, y, z) = −
∫

d4k1

(2π)4

d4k2

(2π)4
e−i(k1+k2)·x+ik1·y+ik2·z

∫
d4p

(2π)4
×{

tr[TbTcTa]Tr

[
/p− /k1 + /a1

(p− k1 + a1)2 + iε
γν

/p+ /a1

(p+ a1)2 + iε
γρPL

]
−tr[TcTbTa]Tr

[
/p+ /a2

(p+ a2)2 + iε
γν

/p+ /k1 + /a2

(p+ k1 + a2)2 + iε
γρPL

]
+tr[TcTbTa]Tr

[
/p− /k2 + /a2

(p− k2 + a2)2 + iε
γρ

/p+ /a2

(p+ a2)2 + iε
γνPL

]
−tr[TbTcTa]Tr

[
/p+ /a1

(p+ a1)2 + iε
γρ

/p+ /k2 + /a1

(p+ k2 + a1)2 + iε
γνPL

]}
. (354)

It is now convenient to separate the group theory trace into a symmetric and antisymmetric part

tr[TbTcTa] = dabc +
i

2
Nfabc ,

tr[TcTbTa] = dabc −
i

2
Nfabc , (355)

where dabc = 1
2tr[{Ta, Tb}Tc] is totally symmetric in abc. The contribution of the term proportional to

the group structure constants fabc precisely reproduce the naive Ward identity (349) and has nothing to
do with the quantum anomaly. The remaining, symmetric part, is

∂µΓµνρabc (x, y, z) = −dabc
∫

d4k1

(2π)4

d4k2

(2π)4
e−i(k1+k2)·x+ik1·y+ik2·z

∫
d4p

(2π)4
×{

Tr

[
/p− /k1 + /a1

(p− k1 + a1)2 + iε
γν

/p+ /a1

(p+ a1)2 + iε
γρPL

]
−Tr

[
/p+ /a2

(p+ a2)2 + iε
γν

/p+ /k1 + /a2

(p+ k1 + a2)2 + iε
γρPL

]
+Tr

[
/p− /k2 + /a2

(p− k2 + a2)2 + iε
γρ

/p+ /a2

(p+ a2)2 + iε
γνPL

]
−Tr

[
/p+ /a1

(p+ a1)2 + iε
γρ

/p+ /k2 + /a1

(p+ k2 + a1)2 + iε
γνPL

]}
. (356)

Grouping together the first two and the last two trace factors, one arrives at

∂µΓµνρabc (x, y, z) = −dabc
∫

d4k1

(2π)4

d4k2

(2π)4
e−i(k1+k2)·x+ik1·y+ik2·z

∫
d4p

(2π)4
×{

Tr[γkγνγλγρ
1− γ5

2
] Ikλ(a1 − a2 − k1, a2, a2 + k1)

+Tr[γkγργλγν
1− γ5

2
] Ikλ(a2 − a1 − k2, a1, a1 + k2)

}
, (357)

where

Ik,λ(k, c, d) =

∫
d4p

(2π)4
[fk,λ(p+ k, c, d)− fk,λ(p, c, d)] ,
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and fk,λ(p, c, d) =
(p+ c)k(p+ d)λ

[(p+ c)2 + iε][(p+ d)2 + iε]
. (358)

These integrals can be computed by Taylor expansion in powers of k. It can be shown that each contri-
bution in the Taylor expansion is a surface integral and that only the terms linear and quadratic in k in
the expansion do contribute. After an explicit computation, the result is

Ik,λ(k, c, d) =
i

96π2
[2kλck + 2kkdλ − kλdk − kkcλ − ηkλk(k + c+ d)] . (359)

Demanding that there is no anomaly in the vector currents implies that the term without γ5 in (357)
vanishes. Due to the symmetry of this term in k, λ and ν, ρ, this term appears in the combination

Ik,λ(a1 − a2 − k1, a2, a2 + k1) + Iλ,k(a1 − a2 − k1, a2, a2 + k1)

+Ik,λ(a2 − a1 − k2, a1, a1 + k2) + Iλ,k(a2 − a1 − k2, a1, a1 + k2) . (360)

This, and actually also the anomalies in the other currents, vanish for a2 = −a1, choice that we keep
from now on. The vector a1 is therefore parameterizing the leftover scheme dependence of the triangle
graph in question.

We are left with the term in the trace containing γ5, for which we use

Tr[γνγργσγτγ5] = −4i ενρστ . (361)

By using (361), we obtain the following divergence formulae

∂µΓµνρabc (x, y, z) = −dabc
8π2

∫
d4k1

(2π)4

d4k2

(2π)4
e−i(k1+k2)·x+ik1·y+ik2·z ενρστ a1,σ(k1 + k2)τ (362)

∂νΓµνρabc (x, y, z) = −dabc
8π2

∫
d4k1

(2π)4

d4k2

(2π)4
e−i(k1+k2)·x+ik1·y+ik2·z εµρστ (a1 + k2)σ(k1)τ (363)

∂ρΓ
µνρ
abc (x, y, z) = −dabc

8π2

∫
d4k1

(2π)4

d4k2

(2π)4
e−i(k1+k2)·x+ik1·y+ik2·z εµνστ (k1 − a1)σ(k2)τ (364)

A close investigation of the anomalous structure of the three currents (364) shows that it is not possible
to choose the shift vector a1 in order to eliminate the anomaly altogether. The choice a1 ∼ k1 + k2

eliminates the anomaly from the current Ja, whereas a1 ∼ ±k1 − k2 (a1 ∼ k1 ± k2) eliminates the
anomaly from the current Jb (Jc). For generic vectors k1, k2 there is no common solution to these three
anomalies. A generic choice of scheme (i.e. a1,µ) indicates that the divergence structure is asymmetric
among the three vertices of the triangle graph. The choice should be dictated by physical requirements.
In the class investigated in the next subsection, Ja is the current of a global symmetry, whereas Jb and
Jc are currents of gauge symmetries, coupling to gauge fields. In this case, one has to choose a1 so that
only Ja has an anomaly, which has the unique solution

a1 = k1 − k2 . (365)

In this case, the anomaly in the current Ja becomes

∂µΓµνρabc (x, y, z) =
1

4π2
dabcε

αβνρ∂δ
4(y − x)

∂yα
∂δ4(z − x)

∂zβ
. (366)

One can interpret this result as a quantum contribution to the current in the presence of gauge fields

〈Jµa 〉q =
gbgc

2

∫
d4xd4yΓµνρabc (x, y, z)AbνA

c
ρ , (367)
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leading to the anomalous divergence

〈∂µJµa 〉an =
gbgc
8π2

dabcε
ανβρ∂αA

b
ν∂βA

c
ρ . (368)

In the non-abelian gauge fields case, there are additional contributions from square and pentagon dia-
grams. In both the abelian and non-abelian case, one obtains the gauge-invariant result

〈∂µJµa 〉an =
gbgc
32π2

dabcε
ανβρF bανF

c
βρ . (369)

Notice that the explicit form of the group-theory coefficient in terms of left and right-handed original
fermions is

dabc =
1

2
Tr[{tLa , tLb }tLc ]− 1

2
Tr[{tRa , tRb }tRc ] . (370)

We have therefore shown that Symmetries of the classical action can have anomalies at the quan-
tum level, generated by one-loop triangle diagrams. There are two different cases to consider:
- anomalies in the conservation of a global symmetry current
- anomalies for gauged symmetries.

8.2 Global anomalies
For global symmetries, quantum anomalies do not creates consistency problems; they actually play an
important role in QCD in the so-called η′ problem and in the electromagnetic decay of the pion π0 → γγ.
For a global symmetry with Noether current Jam of generator T a, the anomaly in operatorial form is given
by

∂mJam = − g2

16π2
εmnpq tr(T aFmn Fpq) ,

where tr(T aFmn Fpq) =
1

2
tr(T a{TA, TB}) FAmn FBpq , (371)

where g is the gauge coupling of the gauge group with corresponding gauge fields Am = AAmT
A. In

(371) the trace is computed over all the fermionic spectrum of the theory, considered in this section to
be of Dirac type, i.e. tL = −tR in eq. (370). Let us consider to start with a Dirac fermion coupled to a
U(1) gauge field

L = Ψ̄iγmDmΨ−MΨ̄Ψ . (372)

In the massless limit M → 0, the model has a vector and an axial symmetry U(1)V × U(1)A. The
corresponding Noether currents

Jm = Ψ̄γmΨ , J5
m = Ψ̄γmγ5Ψ (373)

satisfy

∂mJm = 0 , ∂mJ5
m = 2iMΨ̄γ5Ψ− e2

16π2
εmnpq Fmn Fpq , (374)

where the last term in the second divergence in (374) is the quantum anomaly. Even if the vector and
the axial currents in (374) are both classically conserved in the massless limit M = 0, there is no
regularization preserving both the conservation of the vector and of the axial current, as shown in the
previous section. If U(1)V is a gauge symmetry (like the gauge symmetry in electromagnetism), we have
for consistency of the theory to choose a regularization preserving the vector current conservation. As a
consequence, one is forced to accept the existence of an anomaly which violates at the quantum level the
axial current conservation. This explains actually why the η′ meson is not a pseudo-Goldstone boson for
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Fig. 19: The electromagnetic pion desintegration π0 → γγ is related to the axial U(1)A anomaly.

the dynamical chiral symmetry breaking U(2)L × U(2)R = SU(2)L × SU(2)R × U(1)B × U(1)A ⇒
SU(2)V × U(1)B in QCD. Indeed, in this case the U(1)A axial current has the QCD anomaly

JU(1)A
m = ūγmγ5u+ d̄γmγ5d ,

∂mJU(1)A
m = 2i(muūγ5u+mdd̄γ5d)− g2

3

16π2
εmnpq FAmn F

A
pq , (375)

where FA is the gluon field strength and g3 is the color SU(3)c gauge coupling . Due to the explicit
breaking of the axial symmetry by quark masses and the nonperturbative instanton effects, the η′ gets a
mass larger than the pions π±, π0, which are the pseudo-goldstone bosons of the axial SU(2)A symmetry.
Another manifestation of the axial anomaly is in the electromagnetic pion decay π0 → γγ. Let us define
the SU(2) currents

Jam = q̄γm
τa

2
q , J5,a

m = q̄γmγ5
τa

2
q , (376)

where q = (u, d)T and τa are the Pauli matrices. The fact that the pions are Goldstone bosons of the
axial SU(2)A implies that the corresponding currents have a non vanishing matrix element between the
vacuum and a one pion state

〈0|J5,a
m (x)|πb(p)〉 = i pm fπ δ

ab e−ipx , (377)

where the mass parameter fπ is called the pion decay constant. The axial isospin currents have no QCD
anomalies since tr(τa{TA, TB}) = 0 as a result of the isospin symmetry of strong interactions, but J5,a

m

have an anomaly from the electromagnetic coupling

∂mJ5,3
m = − 1

16π2
εmnpq Fmn Fpq tr(Q

2 τ3

2
) = − Nce

2

96π2
εmnpq Fmn Fpq , (378)

where Q = diag (2e/3,−e/3) is the matrix of the quark electric charges qu = 2e/3, qd = −e/3 and
Nc = 3 is the number of quark colors.

By using (377) and (378) and using that under an axial SU(2)A with quarks q = (u, d) transform-
ing as δq = iγ5

τ3
2 q, the pion transforms like a Goldstone boson δπ0 = αfπ, we obtain that the effect of

the anomaly is to generate an effective pion-photon-photon coupling

Leff =
π0

fπ
∂mJ5,3

m = − Nce
2

96π2fπ
π0εmnpq Fmn Fpq . (379)

In order to obtain (379), we have used the Noether theorem: the variation of the lagrangian under a
transformation generated by the parameter α is equal to δL = α ∂mJm, where Jm is the correspond-
ing Noether current. The effective lagrangian (379) is its low-energy manifestation; its variation under
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the axial transformations precisely repoduces the anomaly of the microscopic lagrangian. Using this
effective coupling, the amplitude of the pion decay is computed to be

M(π0 → γγ) = − α

πfπ
εmnrsε∗nε

∗
spmkr , (380)

where (p, εn) and (k, εs) are the momenta and polarization of the two photons. By summing over the
photon polarizations ∑

pol.

|εmnrsε∗nε∗spmkr|2 = 2 (pk)2 =
m4
π

2
, (381)

we finally obtain the pion decay width

Γ(π0 → γγ) =
1

32πmπ

∑
pol.

|M(π0 → γγ)|2 =
α2

64π3

m3
π

f2
π

, (382)

which is in excellent agreement with the experimental branching ratio of the pion decay into two photons
Γ(π0 → γγ) = (1.19± 0.08)× 1016s−1.

Another interesting application of quantum anomalies is to the so-called strong CP problem. There
is no symmetry principle forbidding the following term in the QCD lagrangian

Lθ = θ
g2

32π2
εmnpq Tr(Fmn Fpq) , (383)

where θ is a real (angular) parameter. Even if this can be shown to be a total derivative, topological
(instanton) configurations in QCD makes this term to have nontrivial consequences. Actually, even if
for some reason the original theta parameter is zero in the QCD lagrangian, it will be generated from
the unitary redefinitions (241) that we were forced to perform in order to diagonalize the quark mass
matrices. Indeed, the U(1)A part of these transformations is anomalous, leading to a change in the theta
parameter

θ → θ − 1

2
arg det mq , (384)

where det mq = det mu det md is the product of the quark mass matrices. The theta parameter violates
the CP symmetry of strong interactions and the gluonic term generates a neutron dipole moment of order
dn ∼ |θ| em

2
π

m3
N
∼ 10−16|θ| ecm, in conflict with the experimental data unless θ < 10−10. This leads

to the so-called strong CP problem. The problem would be absent if the up-quark mass would be zero,
since in this case the theta parameter could be shifted to zero by an up-quark chiral redefinition. The
masslessness of the up-quark is however probably excluded by now. The (commonly considered as the)
most elegant solution to the strong CP problem is by postulating the existence of a new particle, the axion
a [25]. If :
- there is a new abelian U(1)PQ, spontaneously broken global symmetry, with the corresponding pseudo-
Goldstone boson a called the axion, and with the symmetry breaking scale fa
- such that U(1)PQ has triangle anomalies with the QCD gauge group U(1)PQSU(3)2

c ,
then the anomaly generates new couplings in the effective lagrangian which shift the θ parameter

g2
3

32π2
ξ
a(x)

fa
εmnpq Tr(Fmn Fpq) ⇒ θeff = θ + ξ

a

fa
, (385)

where ξ is a model-dependent parameter parametrizing the strength of the axion couplings to matter.
The θ parameter becomes therefore a dynamical quantity that will be dynamically determined by the
minimization of the scalar potential of the axion. On the other hand, non-perturbative QCD instanton
effects generate an axion potential of the type

V (a) ∼ g2
3

32π2
Λ4
QCD

[
1− cos (ξ

a(x)

fa
+ θ)

]
. (386)
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Fig. 20: Axion searches and constraints in the plane gaγ (the axion-photon coupling) versus the axion mass. See
for example [43] for more details.

The minimum of the scalar potential is then reached at

θeff = 0 and the axion mass is ma ∼ ξ
g3

4
√

2π

Λ2
QCD

fa
. (387)

Axions were intensively searched since the 80’s. They have particular couplings to gauge fields and
to fermions. In particular, in the presence of electromagnetic fields, they can convert into photons. We
display in fig. 20 some recent constraints in the plane (gaγ ,ma), where gaγ is the axion-photon coupling.
On the theoretical side, axions are also present in most SUSY and extensions of the SM and play a crucial
role in string theories, from various point of view, as e.g. anomaly cancelation and stabilization of moduli
fields describing the geometry of the internal space.

Let us finish this part with a comment. The quantum anomaly is actually a total derivative :

εmnpq Tr(Fmn Fpq) = ∂m Km , (388)

where

Kµ = 2εµναβ

(
AνA∂αAβA +

g

3
fABCAνAAαBAβC

)
= εµναβ

(
AνAF

αβA − g

3
fABCAνAAαBAβC

)
.

(389)
Despite this, in the non-abelian case, classical Yang-Mills configurations generate highly non-trivial
effects like the appearance of the theta angle in QCD and of the baryon (B) and lepton (L) number non-
conservation. Indeed, the baryonic and leptonic currents for example have an U(1)B×SU(2)2

L anomaly
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Fig. 21: One-loop gauge anomalies, if present, render the theory inconsistent at the quantum level.

they (have also an U(1)B × U(1)2
Y anomaly, which however plays no role in what follows)

JBm =
1

3

∑
i

(q̄iγmqi + ūiRγmuiR + d̄iRγmdiR) , ∂mJBm = Nf ×
g2

16π2
εmnpq Tr(Fmn Fpq) ,

JLm =
∑
i

(l̄iγmli + ēiRγmeiR) , ∂mJBm = ∂mJLm , (390)

where Nf = 3 is the number of families, leading to processes with a change in the baryon number

∆B = Bf −Bi =

∫
d4x∂mJBm =

Nfg
2

16π2

∫
d4xεmnpq Tr(Fmn Fpq) ≡ NfNCS ,

where NCS =
g2

16π2

∮
dΣµ Kµ (391)

is the so-called Chern-Simons number. Even if the result is a total derivative, the baryon number is
violated by classical gauge field configurations vanishing slowly at infinity. Such configurations are
characterized by zero field strength at the infinity Wmn = 0 ↔ Wm = (i/g)U∂mU

−1. The Chern-
Simons number can then be expressed as

NCS =
1

12π2

∫
d3xεijkTr(U∂iU

−1U∂jU
−1U∂kU

−1) . (392)

For SU(2) gauge fields, such configurations are classified by gauge transformations U : S3 → SU(2)
and define the third homotopy group Π3(SU(2)) = Z. NCS is therefore restricted to integer values and
∆B = Nf× integer.

The violation of baryonic symmetry generated by quantum anomalies is expected to play an im-
portant role for generating the observed baryon asymmetry in our universe [26]. Notice that B − L is
however conserved. It is therefore possible to convert a leptonic asymmetry into a baryonic one and
vice-versa.

8.3 Gauge anomalies
For gauge symmetries on the other hand, quantum anomalies, if present as in fig. (21) generate inconsis-
tencies [27]. Indeed, they would violate gauge invariance of the theory, since the gauge variation of the
lagrangian from the Noether theorem (5) is

δL ∼ αA ∂
mJAm . (393)

On the other hand, gauge invariance at the quantum level is crucial for a consistent quantization of
the theory, in particular for the decoupling of un-physical states. The corresponding gauge currents are
of chiral type

JAm = Ψ̄LγmT
A
L ΨL + Ψ̄RγmT

A
RΨR (394)
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and according to our computations above their divergence is proportional to

∂mJAm = +
gBgC
32π2

dABCεmnpq FBmn F
C
pq . (395)

The anomaly coefficients that have to vanish are then

2dABC = tr ({TA, TB}TC)L − tr ({TA, TB}TC)R = 0 , (396)

where the trace is taken over all the fermions in the theory. Notice first that non-chiral (Dirac) fermion
matter does not contribute to gauge anomalies. It can also be shown that fermions in real representations
of the gauge group, for which by definition fermion mass terms are compatible with the gauge invariance,
do not contribute to gauge anomalies. On the other hand, fermions in complex representations of the
gauge group, for which no standard mass terms are possible, do contribute. And this is precisely the
case of the quarks and leptons in the Standard Model. By using properties of the Pauli matrices and
more generally properties of SU(2) representations, it can checked that there are no pure cubic SU(2)3

anomalies. For the Standard Model, it is actually easy to prove that the only possible gauge anomalies
are

SU(2)2
LU(1)Y , U(1)3

Y and SU(3)2
cU(1)Y . (397)

By using the quantum numbers of the known quarks and leptons, the gauge anomaly coefficients in the
Standard Model turn out to be

tr ({τ
a

2
,
τ b

2
}Y )L =

1

2
δab(trY )L = 3× (Nc ×

1

3
− 1) = 0 ,

tr ({Y, Y }Y )L−R = · · · = 6(−2Nc + 6) = 0 ,

tr ({λ
A

2
,
λB

2
}Y )L−R =

1

3
δAB(trY )L−R = · · · = 0 , (398)

where in the last eq. in (398) λA are the SU(3) Gell-Mann matrices. Notice that anomaly cancelation
happens precisely for three quark colors Nc = 3 ! This seems to provide a deep connection between
quarks and leptons in the Standard Model, and a possible hint towards Grand Unified Theories. Gauge
anomaly cancelation gives generally strong constraints on the possible spectrum of new chiral particles.
For example, it is easy to show that (homework) :
- the only flavor-independent, anomaly-free Z ′ with the chiral SM spectrum is U(1)B−L, defined accord-
ing to

Field qi uiR diR li eiR
U(1)B−Lcharge 1

3
1
3

1
3 −1 −1

- an extension of the Standard Model with a fourth lepton generation l4, ER alone (without correspond-
ing quarks), with usual leptonic quantum numbers, is inconsistent with the gauge anomaly cancelation
conditions.

Let us finally discuss some subtleties related to the freedom of choosing the shift vectors or, equiv-
alently, of reshuffling the anomaly among the three currents, present in the abelian case. In this case, the
three currents are on the same footing, and it is natural to consider a symmetric distribution of anomalies
among the three curents. There is a single choice that is fully symmetric, namely

a1 =
1

3
(k1 − k2) . (399)

We now proceed to construct the effective action for the gauge fields after integrating out the
fermions. In what follows we consider for simplicity only abelian gauge fields, but the result can be
genralized to the non-abelian case. To cubic order we obtain

Sabc =
1

3!

∫
d4x d4y d4z Γµνρabc (x, y, z) Aaµ(x) Abν(y) Acρ(z) , (400)
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where no summation is assumed on the a, b, c labels.

Upon gauge transformations Aaµ → Aaµ + ∂µε
a we obtain

δSabc = − 1

3!

∫ [
εa∂µΓµνρabc A

b
ν(y) Acρ(z) + εb∂νΓµνρabc A

a
µ(x) Acρ(z) + εc∂ρΓ

µνρ
abc A

a
µ(x) Abν(y)

]
(401)

If the shift vector a1 is a constant independent of momenta then it does not contribute to the gauge
variations. We therefore parameterize the scheme dependence as

a1 = Ak1 +Bk2 . (402)

The real numbers A,B can be different for different abc combinations :

δSabc = − dabc
3!(32π2)

∫
d4x

{
(A−B)abcε

a εµνρσ F bµνF
c
ρσ + (Babc + 1)εb εµνρσ F aµνF

c
ρσ

−(Aabc − 1)εc εµνρσ F aµνF
b
ρσ

}
. (403)

In the case where the currents Jb, Jc are conserved and the whole anomaly is in Ja, thenAabc = −Babc =
1 and one gets

δSabc = − dabc
24π2

∫
d4x εa F b ∧ F c , (404)

where we used
F a ∧ F b =

1

4
εµνρσ F aµνF

b
ρσ . (405)

In the case where all gauge currents are abelian, it is more natural to use the symmetric scheme Aabc =
−Babc = 1/3. In this case we obtain the gauge variation

δSabc = − dabc
3!(12π2)

∫
d4x

{
εa F b ∧ F c + εb F a ∧ F c + εc F a ∧ F b

}
. (406)

In the abelian case, one can sum over the U(1)’s to obtain the full cubic effective action in the
symmetric scheme. Its gauge variation is

δS3 =
∑
a,b,c

δSabc = − dabc
24π2

∫
d4x εaF b ∧ F c , (407)

where we have reinstated our summation convention.

If the three currents are abelian, there is clearly an ambiguity in the scheme (choice of the shift
vector a1) in the distribution of the anomaly over the currents. One may study the effect of changing the
scheme of the triangle graphs. This is obtained by setting

Aabc =
1

3
+ Ãabc , Babc = −1

3
+ B̃abc . (408)

The gauge variation now becomes

δS3 = − dabc
24π2

∫
d4x

{
εa F b ∧ F c

}
(409)

− dabc
3!(8π2)

∫
d4x
{
Ãabc(ε

aF b ∧ F c − εcF a ∧ F b)− B̃abc(εaF b ∧ F c − εbF a ∧ F c)
}

The extra terms have the same transformation properties as

SGCS = − dabc
3!(16π2)

∫
d4x εµνρσ

[
Ãabc A

a
µA

c
νF

b
ρσ − B̃abc AaµAbνF cρσ

]
. (410)
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Therefore, in this new scheme, the new effective action is obtained from the old one by adding the
so-called generalized Chern-Simon terms (GCS) terms [44] in (410).

A more direct way to see this is to compute the variation of the effective action between two
different regularisation schemes specified by the shift vectors aabc1 and ãabc1 , where aabc = Aabck1 +
Babck2 :

∆Γµνρabc (x, y, z) = Γµνρabc |ã1 − Γµνρabc |a1 . (411)

By Taylor expanding

∆Γµνρ(p, ki, ai) = (ã1 − a1)σ
∂

∂aσ1
Γµνρ(p, ki, a1)

+
1

2
(ã1 − a1)σ1(ã1 − a1)σ2

∂2

∂aσ11 ∂aσ21

Γµνρ(ki, a1) + · · · (412)

and noticing that ∂Γµνρ(p, ki, a)/∂aσ = ∂Γµνρ(p, ki, a)/∂pσ, we can cast the scheme difference into
the form

∆Γµνρabc (x, y, z) =
i

(2π)12

∫
d4k1d

4k2 e
−i(k1+k2)x+ik1y+ik2z(ã1 − a1)σ ×∫

d4p tabc
∂

∂pσ
[
Γνρµabc (p, k1, k2, a1)− Γρνµabc (p, k2, k1,−a1)

]
+ · · · , (413)

where · · · are contributions at least quadratic in the shift vectors a containing at least second deriva-
tives with respect to the loop momentum p. Since all contributions come from the boundary of the loop
momentum space, we will see in a moment that only the first contribution gives a non-vanishing con-
tribution. Like in the case of the triangle gauge anomalies, the quantity ∆Γµνρabc is given by a surface
contribution. A simple counting of the leading momentum dependence for p → ∞ shows that only the
leading contribution

Γνρµijk (p, k1, k2, a1)→ − 2

p6

[
p2(pµηνρ + pνηµρ + pρηµν)− 4pµpνpρ + ip2ενρµσpσ

]
(414)

is giving a non-vanishing result and only the last term in (414) contributes to (413). By explicitly com-
puting now the surface integral∫

d4p ∂σ
pε
p4

= −1

8
ησε

∫
d4p ∂2 1

p2
= −π

2

4
ησε , (415)

we finally get the difference of the effective action in two different regularisation schemes to be equal to

∆San
3 =

1

3!

∫
d4x d4y d4z ∆Γµνρabc (x, y, z) Aaµ(x) Abν(y) Acρ(z)

=
1

32π2
dabc (∆Aacb −∆Babc)

∫
Aa ∧Ab ∧ F c . (416)

9 Effective action and the effective potential
The starting point is the addition of an external source J(x) to the lagrangian density

L(φ, ∂mφ) → L(φ, ∂mφ) + J(x)φ(x) . (417)

The generating functional W (J) of Green functions is

eiW (J) = 〈0, out|0, in〉J = 〈0, out| ei
∫
d4xJ(x)φ(x |0, in〉. (418)
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The expansion ofW (J) in a Taylor functional series generates the connected Green functionsG(n)(x1 · · ·xn)

W (J) =
∑
n

1

n!

∫
d4x1 · · · d4xn G

(n)(x1 · · ·xn) J(x1) · · · J(xn) . (419)

The classical field φc is defined by

φc(x) =
δW

δJ(x)
=
〈0, out|φ(x)|0, in|〉J
〈0, out|0, in|〉J

. (420)

The effective action Γ(φc) is defined by the Lagrange transform

Γ(φc) = W (J) −
∫
d4x J(x)φc(x) , (421)

from which it follows that
δΓ

δφc(x)
= − J(x) . (422)

An illuminating intuitive interpretation of Γ(φc) can be found using the path-integral formalism for field
theory, according to which

Z(J) = eiW (J) =

∫
Dφ ei

∫
d4x[L(φ)+J(x)φ(x)] . (423)

The definition of the effective action (421) used in (423) leads then to

ei{Γ(φc)+
∫
d4x J(x)φc(x)} =

∫
Dφ ei

∫
d4x[L(φ)+J(x)φ(x) . (424)

Therefore the effective action is that of a classical field φc(x) that reproduces the spectrum and inter-
actions of a quantum field φ(x) of action S[φ(x)] =

∫
d4xL(φ), in the presence of an external source

J . When the source is switched-off, the effective action correctly captures the extrema of the quantum
system.

Analogously to (419), the expansion of Γ(φc) in a Taylor functional series generates the one-
particle irreducible (1PI) Green functions Γ(n)(x1 · · ·xn)

Γ(φc) =
∑
n

1

n!

∫
d4x1 · · · d4xn Γ(n)(x1 · · ·xn)φc(x1) · · ·φc(xn) . (425)

By definition, the 1PI Green functions are Green functions which cannot be separated into two discon-
nected diagrams by cutting one internal line/propagator. In addition, in the corresponding Feynman rules,
the external propagators should be removed. More precisely, we have

Γ(n)(x1 · · ·xn) = −i 〈φ(x1) · · ·φ(xn)〉1PI . (426)

The effective action has an alternative expansion in derivatives

Γ(φc) =

∫
d4x

[
−V (φc) +

1

2
Z(φc)(∂φc)

2 + · · ·
]
, (427)

where · · · denote higher derivative terms. In (427), V (φc) is called the effective potential. In order to
express it as a function of the irreducible Green functions, let us Fourier tranform

Γ(n)(x1 · · ·xn) =

∫
d4k1

(2π)4
· · · d

4kn
(2π)4

(2π)4 δ4(k1 + · · · kn) ei(k1x1+···knxn) Γ(n)(k1 · · · kn) . (428)
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By using (425), (427) and (428), one finds

V (φc) = −
∑
n

1

n!
Γ(n)(0 · · · 0) φnc . (429)

Its classical limit is the usual scalar potential, but for finite ~, V (φc) contains the quantum correc-
tions to it. As such, it plays an important role since it encodes the quantum corrections to the ground
state and the quantum aspects of spontaneous symmetry breaking. Indeed, from (422) one sees that
by switching off the source J we reach an extremum of the effective action, which for translationally
invariant vacua is equivalent to an extremum of the effective potential

δΓ

δφc
= 0 → dV

dφc
= 0 . (430)

The computation of the effective action at the loop level will be plagued with UR (and possibly IR) diver-
gences. We will therefore impose renormalisation conditions for masses, couplings and wavefunctions.
In what follows we will use the counterterms method and a simple momentum cutoff regularization .

Let us first of all show that the quantum expansion of the effective action in powers of ~ is equiv-
alent to the expansion in the number of loops. In the functional integral quantization, the lagrangian
appears as

1

~
L(φ, ∂φ) . (431)

Let us call P the power of ~ associated to any graph, than can be expressed as a function of the internal
propagators I and the number of vertices V of the graph as

P = I − V , (432)

since every propagator carries a factor of ~, while every vertex carries a factor of ~−1. On the other hand,
the number of loops is given by

L = I − V + 1 , (433)

where the number of loops can be conveniently defined as the number of independent integration mo-
menta. Combining (432) and (433), one finds indeed

P = L− 1 , (434)

which proves the equivalence of the semiclassical expansion and the loop expansion.

The computation of the effective potential can be done diagramatically or by functional methods.
In the diagrammatic approach, one starts from (425), for constant classical fields φc. Let us consider for
definiteness a massless scalar theory with quartic self-interaction, of lagrangian

L =
1

2
(∂φ)2 − λ

4!
φ4 +

1

2
A(∂φ)2 − 1

2
Bφ2 − 1

4!
Cφ4 , (435)

where the last three terms in (435) are counterterms that will be fixed by renormalization conditions. The
simplest, naive renormalization conditions we would like to impose in the effective potential V (φc) for
such a massless theory are

d2V

dφ2
c

|φc=0 = 0 ,
d4V

dφ4
c

|φc=0 = λ . (436)

To lowest-order in perturbation theory, only one graph contributes and

Vtree =
λ

4!
φ4
c . (437)
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At the one-loop level there are an infinity of polygon Feynman diagrams with 2n external lines of scalar
fields φc, computed at zero external momenta. By adding to them the tree-level contribution (437) and
the counterterms, one finds

V (φc) = Vtree + V1−loop =
λ

4!
φ4
c +

1

2
Bφ2

c +
1

4!
Cφ4

c

+i

∫
d4p

(2π)4

∞∑
n=1

1

2n

(
λφ2

c/2

p2 + iε

)n
. (438)

The numerical factors in (438) have the following explanation:
- the overall factor of i comes from the definition of W (J), eq. (418).
- The factor of 1/2 in λφ2

c/2 comes from the incomplete cancelation of the 1/4! in the interaction, since
the interchange of the two external lines at the same vertes does not lead to a new graph.
- The factor of 1/2n has a combinatorial origin: rotation or reflection of the polygon with 2n exter-
nal scalar lines does not lead to an independent contraction in the Wick expansion. This leads to an
incomplete cancelation of the 1/n! factor in the perturbation theory formula.

Notice that each term in the one-loop series is severely IR divergent, due to the n massless scalar
propagators. A much better situation is obtained by realizing that one can sum the series. After the Wick
rotation to the Euclidian space, one obtains

V (φc) =
λ

4!
φ4
c +

1

2
Bφ2

c +
1

4!
Cφ4

c +
1

2

∫
d4p

(2π)4
ln

(
1 +

λφ2
c

2p2

)
. (439)

One can see that the resulting potential has now only a logarithmic singularity at the origin φc = 0. The
explicit computation with a momentum cutoff Λ gives the result

V (φc) =
λ

4!
φ4
c +

1

2
Bφ2

c +
1

4!
Cφ4

c +
1

32π2

[
λφ2

cΛ
2

2
+
λ2φ2

c

8

(
ln
λφ2

c

2Λ2
− 1

2

)]
. (440)

One novelty is that, due to the singularity at the origin, it is not possible to use the renormalization
conditions (436). Instead, one is forced to introduce an arbitrary mass scale M into the theory and to
modify the renormalization conditions according to

d2V

dφ2
c

|φc=0 = 0 ,
d4V

dφ4
c

|φc=M = λ . (441)

The new renormalization conditions (441) determine the counterterms

B = − λΛ2

32π2
, C = − 3λ2

32π2

(
ln
λM2

2Λ2
+

11

3

)
. (442)

The final renormalized one-loop corrected effective potential becomes then

V (φc) =
λ

4!
φ4
c +

λ2φ4
c

256π2

(
ln

φ2
c

M2
− 25

6

)
. (443)

As expected for a renormalizable theory, the dependence on the cutoff disappeared in the final renormal-
ized expression (443). As emphasized before, the renormalized mass scale M is arbitrary; the physics
should be independent on it. One can equally well use a different value M ′ in the renormalization con-
ditions (441). In this case, one obtains the effective potential

V (φc) =
λ′

4!
φ4
c +

λ′2φ4
c

256π2

(
ln

φ2
c

M ′2
− 25

6

)
. (444)
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Since the effective potential is a physical quantity, it should be the same for any value used for M . We
obtain therefore a relation between the couplings λ and λ′

λ− 3λ2

32π2
lnM2 = λ′ − 3λ′2

32π2
lnM ′2 , (445)

that at the one-loop level can be simplified to

λ′ = λ+
3λ2

32π2
ln
M ′2

M2
. (446)

It is gratifying that by using the effective potential we obtain the same equation (309) obtained by dia-
grammatic methods, leading to the RG equation (325). The effective potential can therefore be used to
derive in a compact way RG equations for couplings of the theory.

At the technical level, the computation of the effective potential is simpler in the path integral
formulation. In this approach, one expands the quantum field around a classical value

φ = φc + φq , (447)

where φq describe oscillations of the quantum field around the classical configuration φc. One-loop is
equivalent to expanding to the quadratic order in the fluctuation. One then expands

S(φ) +

∫
d4xJ(x)φ(x) = S(φc) +

∫
d4xJ(x)[φc(x) + φq(x)]

+

∫
d4xφq(x)

[
δS

δφ(x)

]
φc

+
1

2!

∫
d4x1

∫
d4x2φq(x1)

[
δ2S

δφ(x1)δφ(x2)

]
φc

φq(x2) + · · · .(448)

The linear term in φq in (448) vanishes because of (422). Substituting (448) into (426) and performing
the gaussian integral, one finds

ei{Γ(φc)+
∫
d4x J(x)φc(x)} = ei

∫
d4x [L+J(x)φc(x)] ×

[
Det

δ2S

δφ(x1)δφ(x2)

]− 1
2

, (449)

or the equivalent relation

Γ(φc) = S(φc) +
i

2
tr ln

[
δ2S

δφ(x1)δφ(x2)

]
, (450)

where in (449) and (450) the determinant and the trace are defined in the functional sense. For the
massless φ4 theory that we discussed in this section,

L =
1

2
(∂φ)2 − λ

4!
φ4 → δ2S

δφ(x1)δφ(x2)
= −(�+

λφ2
c

2
)δ4(x1 − x2) (451)

and after passing to the momentum space and the Wick rotation, one is led after adding the counterterms
the same effective potential (439) that we found by the diagrammatic method, up to a field-independent
contribution to the vacuum energy.

Notice that at the one-loop level one can generalize the above considerations to a general formula.
Let us consider a theory containing scalar or fermionic fields χ, χ̄ and gauge fields Am, coupled to the
scalar φ for which we want to compute the effective action. Then, at the one-loop order,

eiΓ(φc) =

∫
D(φq, χ, χ̄, Am) eiSquadratic(φc+φq ,χ,χ̄,Am) , (452)
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where Squadratic(φc + φq, χ, χ̄, Am) denotes the classical action containing the classical contribution
plus the quadratic terms in the quantum fields. One can writes an explicit form

Squadratic(φc + φq, χ, χ̄, Am) = S(φc) +
1

2
φqM

2
φ(φc)φq + χM2

χ(φc)χ̄+
1

2
AmM

2
A(φc)A

m , (453)

whereM2
φ(φc),etc are field-dependent masses, which reduce to the true mass in the ground state 〈φ〉. For

constant fields φc one can then find a compact form for the effective potential 11

V (φc) = Vtree +
1

2
Str

∫
d4k

(2π)4
ln(k2 +M2(φc)) , (454)

where StrM2(φc) = Tr(M2
s )(φc) − 2Tr(M †fMf )(φc) + 3Tr(M2

v )(φc) and where Ms(φc), Mf (φc)
and Mv(φc) denote (real) scalar, (Weyl) fermionic and spin-1 vector field-dependent mass matrices,
respectively.

9.1 Application: Running of λ in the Standard Model from top loops
The top Yukawa coupling is the only one which is large, very close to one. As such, it has the largest
effect on radiative corrections and in particular in the energy evolution of the other couplings in the
Standard Model. Let us use the effective potential formalism in order to work out the effect of the top
Yukawa on the running of the Higgs self-coupling λ. The relevant effective lagrangian in this case is

LHiggs−top = Lkin. − λ(Φ†Φ)2 − (htt̄LtRΦ̃ + h.c.) + · · · , (455)

The Higgs (field)-dependent top mass, to be used in the effective potential computation is

(M †FMF )(Φc) = h2
tΦ
†
cΦc . (456)

According to (454), the top loops induce a one-loop contribution

V1−loop = −3× 4× 1

2

∫
d4k

(2π)4
ln(k2 + h2

tΦ
†
cΦc) , (457)

where the factor of 3 in front counts the number of colors and 4 is the contribution of a Dirac fermion.
Evaluating explicitly with a UV momentum cutoff, one finds

V1−loop = −3h2
tΦ
†
cΦcΛ

2

8π2
− 3h4

t

16π2
(Φ†cΦc)

2

(
ln
h2
tΦ
†
cΦc

Λ2
− 1

2

)
. (458)

Adding the tree-level potential and the counterterms, the full one-loop effective potential becomes

V(Φc) = −µ2|Φc|2 + λ|Φc|4 +B|Φc|2 + C|Φc|4

−3h2
t |Φc|2Λ2

8π2
− 3h4

t

16π2
|Φc|4

(
ln
h2
t |Φc|2

Λ2
− 1

2

)
. (459)

By imposing the renormalization conditions

[
∂2V

∂Φ∂Φ†
]Φc=0 = −µ2 , [

∂4V

∂Φ2∂Φ†2
]Φc=M = 4λ , (460)

one finds the renormalized effective potential

V(Φc) = −µ2|Φc|2 + λ|Φc|4 −
3h4

t

16π2
|Φc|4

(
ln
|Φc|2

M2
− 3

)
. (461)

11We ignore here the counterterms, that have to be added of course for appropriate renormalization.
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In analogy with (445) and (446), one can find the running of λ by imposing the invariance of the effective
potential under changes of the renormalization scale M . One finds

λ(M) +
3h4

t

16π2
lnM2 = λ(M ′) +

3h4
t

16π2
lnM ′2 , (462)

or equivalently

λ(M ′) = λ(M)− 3h4
t

16π2
ln
M ′2

M2
. (463)

The effect of the top loops is therefore a decrease of the self-coupling λ by going towards higher energy.
There is the danger that the coupling becomes negative at some scale. We will analyze this phenomenon
in more detail and its interpretation of in the next section.

9.2 Spontaneous symmetry breaking by radiative corrections ?
Starting from the original massless theory with no symmetry breaking pattern, one can show that in the
quantum corrected one-loop theory, a non-trivial minimum is generated leading to spontaneous symmetry
breaking [45]. Indeed, minimization of the one-loop effective potential (443) leads to an extremum for
φc = 〈φ〉 determined by

λ ln
〈φ〉2

M2
= −32π2

3
+

11λ

3
. (464)

The fact that this is a minimum can be seen be computing

d2V

dφ2
c

|〈φ〉 =
λ〈φ〉2

2
+

3λ2〈φ〉2

64π2

(
ln
〈φ〉2

M2
− 3

)
' λ〈φ〉2

2
> 0 ,

〈V 〉 = −λ
2〈φ〉4

512π2
< 0 . (465)

The quantum generated minimum is therefore the absolute ground state of the theory. However, by taking
into account possible higher-order corrections, one realizes that this minimum lies far outside the validity
of the perturbation theory and therefore it is not reliable. As shown in [45] however, in other interesting
theories like for example scalar electrodynamics, such a loop induced spontaneous symmetry breaking
is realized in perturbation theory and lead to the interesting phenomenon of dimensional transmutation.
This means that a dimensionless coupling of the initial massless theory is traded for a dimensional mass
parameter M in the quantum theory, that will trigger spontaneous symmetry breaking and set the scale
for physical masses.

Notice that the original φ4 self-interacting theory has the classical scale invariance

x′m = e−ζ xm , φ′ = eζ φ , (466)

with ζ a constant parameter. In the whole Standard Model lagrangian, the only dimensionfull parameter
breaking the scale invariance (466) and acting also on gauge fields Am and fermions Ψ as

Ψ′ = e
3ζ
2 Ψ , A′m = eζ Am , (467)

is the Higgs mass parameter µ2. This mass scale was the responsible for the spontaneous symmetry
breaking SU(2)L × U(1)Y → U(1)em and the generation of the electroweak scale. But the value of the
electroweak scale v ' 246 GeV raises the important question of its origin (see also the next Section).
The fact that spontaneous symmetry breaking can also occur in a classically scale-invariant theory opens
the interesting possibility of the generation of the weak scale itself, in analogy with the QCD scale, by
dimensional transmutation.
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10 The Higgs / Symmetry breaking sector of the Standard Model.
The Higgs boson is the last building block of the Standard Model awaiting its experimental discovery.
There are good theoretical reasons to and preliminary experimental hints from LHC to hope that this
can happen quite soon. We review here some of the theoretical biases which make theorists to favor the
existence of a light higgs scalar. The first two, the perturbativity and the stability bound, are obtained
by extrapolating the Standard Model to high energy scales and imposing perturbativity of couplings and
stability of the SM ground state, respectively. The third one is related to the breakdown of unitarity in
the longitudinal WW scattering at high-energy if the higgs is too heavy or if does not exist.

10.1 Perturbativity bounds
As shown in Section 7, in quantum field theory couplings run. The Higgs mass is then obtained by
knowing the Higgs self-coupling λ at the electroweak scale M2

h = 2λ(v)v2. If this coupling is large
enough, it will hit a Landau pole at a high-energy scale called Λ in what follows. The RGE for the Higgs
self-coupling in the SM is

16π2 dλ

d lnµ
= 24λ2 − (3g′2 + 3g2 − 12h2

t ) λ +
3

8
(g′4 + 2g2g′2 + 3g4)− 6h4

t + · · · , (468)

where · · · denote smaller Yukawas. In the large Higgs mass limit λ >> g2, h2
t , this reduces to

dλ

λ2
=

3

2π2
d lnµ ⇒ 1

λ(µ)
=

1

λ(Λ)
+

3

2π2
ln

Λ

µ
. (469)

This can be interpreted in two alternative ways [46] :

i) If the Higgs mass is known, SM has a Landau pole (signal of a non-perturbative regime)
λ(Λ) >> 1 at an energy scale

Λ = v e
2π2

3λ = v e
4π2v2

3M2
h . (470)

ii) Conversely, asking for perturbativity up to scale Λ (say MGUT ), we obtain an upper bound on the
Higgs mass (homework)

M2
h ≤

4π2v2

3 ln Λ
v

. (471)

10.2 Stability bounds
Standard Model has a potential instability in the small Higgs mass limit [47], since if too small at the
electroweak scale, λ can become negative at high-energy by the RG running. If λ << h2

t , the relevant
leading RGE’s are

16π2 dλ

d lnµ
= −6h4

t , 16π2 dht
d lnµ

=
9h3

t

2
, (472)

which integrate to (homework)

λ(µ) = λ(Λ) +

3h4t (Λ)
8π2 ln Λ

µ

1 +
9h2t (Λ)
16π2 ln Λ

µ

,

h2
t (µ) =

h2
t (Λ)

1 +
9h2t (Λ)
16π2 ln Λ

µ

. (473)

At the one-loop level, the running of λ induced by the top loos is the same derived explicitly by the
effective potential method in (463). As in the perturbativity case limit, this can be interpreted in two
ways :
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Fig. 22: Perturbativity and stability Higgs mass limits. Λ is the scale of new physics (from [48]).

i) For a fixed, known value of the Higgs mass. Let us take µ = v. Then, new physics should show up
before the scale Λ where λ(Λ) = 0,

Λ ≤ v e
8π2λ

3h4t = v e

4π2M2
h

3h4t v
2
. (474)

ii) Alternatively, for a fixed Λ, we get a lower bound on the Higgs mass (homework)

M2
h ≥

3h4
t v

2

4π2
ln

Λ

v
=

3m4
t

π2v2
ln

Λ

v
. (475)

These theoretical Higgs mass limits are summarized in the plot in Figure 22, which contain more
accurate numerical solution to the RG equations. If the scale Λ is very low, these bounds are very loose.
On the other hand, if the SM as an effective theory is valid up to the Planck scale, we obtain a pretty
tight mass range 120 . Mh . 170 GeV. Recent discovery of the new boson at LHC of mass of order
126 GeV, most likely the Higgs scalar responsible for the electroweak symmetry breaking, is pointing
into the metastability region. In this case, there is another vacuum deeper in energy and therefore the
real ground state, at very large vev’s of the scalar, whereas the electroweak vacuum is only locally stable.
However, the lifetime of our vacuum is estimated to be way beyond the current age of the Universe. It
remains to be seen if this metastability can have observable consequences.

10.3 W W scattering and unitarity
There is another bound on the higgs mass which does not involve extrapolations of the SM model to very
high energies. It is coming from the unitarity of scattering amplitude for the longitudinal WLWL →
WLWL scattering [49].
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Fig. 23: Tree-level diagrams contributing to WW scattering.

For a massive W gauge particle of momentum k and mass MW , Am = εm eikx, the three polar-
izations satisfy εmεm = −1, kmεm = 0. In the rest frame km = (E, 0, 0, k), they are

transverse : εm1 = (0, 1, 0, 0) , εm2 = (0, 0, 1, 0) ,

longitudinal : εmL = (
k

MW
, 0, 0,

E

MW
) ∼ km

M
+O(

MW

E
) , (476)

the last expressions being valid for k →∞. Since longitudinal polarization is proportional to the energy,
tree-level amplitude behaves as

A = A(4)(
E

MW
)4 + A(2)(

E

MW
)2 + · · · . (477)

Actually, the diagrams a),b) and c) in Figure 27 give A = g2( E
MW

)2. On the other hand, unitarity
constrains the amplitude to stay small enough at any energy. In order to see this, let us consider the
unitarity of the S-matrix S†S = 1. Then

S = 1 + iA ⇒ i(A−A†) +A†A = 0 (478)

By sandwiching this eq. between a two-particle state |i > :

i(A−A†)ii +
∑
f

|Afi|2 = 0 , (479)

we find the optical theorem : the imaginary part of the forward amplitude of the process i → i is
proportional to the total cross section of i→ anything.
Let us now decompose the scattering amplitude into partial waves

A =

∞∑
l=0

(2l + 1) Pl(cos θ)al , (480)
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where al are partial wave amplitudes of the elastic scattering of two particles. Projecting (479) into the
partial wave l gives Im al = |al|2 . This is only possible if

|Re al| ≤ 1/2 , 0 ≤ Im al ≤ 1 → |al|2 ≤ 5/4 , (481)

which is the unitarity bound we were searching for.
In the case of the SM without the Higgs boson, diagrams a),b) and c) in Fig. 27 lead to

a0 =
g2E2

M2
W

⇒ unitarity breaks down for
√
s ∼ 1.2 TeV . (482)

With the Higgs boson present, amplitudes d),e) in Fig. 27 cancel the raising energy term, such that

a0 =
g2M2

H

4M2
W

→ unitarity breaks down unless MH ≤ 1.2 TeV . (483)

By considering other channels, one get the stronger bound MH ≤ 800 GeV.
Intepretation: If LHC finds no Higgs with a mass MH ≤ 800GeV , unitarity of S-matrix will be
violated. New light degrees of freedom should exist in order to restore unitarity. Most theorists interpret
this result as a no-loose "theorem" for LHC: either LHC finds the Higgs, or it should find the degrees of
freedom replacing it in order to unitarize the WW scattering.

It is important to keep in mind however that most BSM models have invisible higgs decays. For
example, dark matter models can have higgs decays into dark matter particles h → DM DM . In this
case, higss searches are more complicated : the higgs can be "hidden" due to its non-standard decays.

There are other constraints on the Higgs mass that we not discuss here, coming from precision
tests in the Standard Model (see Fig. 24). Most theories have a biased towards a light Higgs, since it
provides a better fit for the SM precision tests.

10.4 Higgs and the hierarchy problem
Quantum corrections to the Higgs mass in the SM, coming from diagrams in Fig. 25, are quadratically
divergent

δm2
h '

3Λ2

8π2v2
(4m2

t − 4M2
W − 2M2

Z −m2
h) . (484)

In a theory including gravity or GUT’s, Λ is a physical mass scale Λ = MP ,MGUT . It is then
difficult to understand why

m2
h = (m0

h)2 +
3Λ2

8π2v2
(4m2

t − 4M2
W − 2M2

Z −m2
h) ∼ v2 << Λ2 (485)

This is the the hierarchy problem [51].

The latest news before this School, from "Lepton-Photon" in august 2011 concerning the Higgs
were that both ATLAS and CMS did exclude the SM Higgs at 95 CL for 145 ≤ MH ≤ 446 GeV
except 288 − 296 GeV. Before the Christmass 2012 however, some excess in the data, first at ATLAS
and then at CMS, has been interpreted as the first possible evidence for a Higgs boson around 125 GeV.
The figure 26 summarizes the situation in the Moriond 2012 conference [54].

11 Neutrino masses and mixings
11.1 Dirac and Majorana masses. Seesaw mechanism
As we already discussed in Subsection 3.7, there are two possible types of fermion masses. The first one
is the Dirac mass, which mixes the two chiralities

LDirac mass = −mDΨ̄Ψ = −mD

(
Ψ̄LΨR + Ψ̄RΨL

)
. (486)
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Fig. 24: SM precision tests favor the existence of a light Higgs. Taken from GFitter webpage [50].

Fig. 25: Quadratic divergences to the Higgs mass in the SM, leading to the hierarchy problem.

In the case of the Standard Model, Dirac neutrino masses are generated, as for the quarks and leptons,
through the Higgs mechanism and require the existence of right-haneded neutrinos. They also respect
the leptonic number.

On the other hand, we can construct Majorana masses with the help of the charge conjugation
matrix C

LMajorana mass = −M
2

(
Ψ̄cΨ + h.c.

)
= −M

2

(
ΨTCΨ + h.c.

)
. (487)

In the frequently-used notation

Ψ =

(
ψ1

ψ̄2

)
, (488)

where ψ1 and ψ2 are two-component spinors, very convenient to use in case of Majorana and Weyl
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Fig. 26: Possible evidence of a Higgs scalar with mass around 125 GeV from ATLAS (left) and CMS (right),
presented at the 2012 Moriond conference [54].

fermions, the Dirac and Majorana masses are given by

LDirac mass = −mDΨ̄Ψ = −mD

(
ψ1ψ2 + ψ̄1ψ̄2

)
,

LMajorana mass = −M
2

(
Ψ̄cΨ + h.c.

)
= −M

2

[
ψ1(iτ2)ψ1 + ψ̄2(−iτ2)ψ̄2 + h.c.

]
. (489)

Majorana fermions N are defined by the Majorana condition N = N c, for which the four-component
fermion is

N =

(
ψ

−iτ2ψT

)
. (490)

In the case of Standard Model (active) neutrinos, Majorana masses are not gauge invariant, but can be
generated after the Higgs mechanism from the dimension-five operators

LMajorana mass = − 1

M
hij(εαβl

α
i Φβ)TC(εγδl

γ
jΦδ) = − 1

M
hij(ν

α
i Φ0 − eiΦ+)TC(ναj Φ0 − ejΦ+) .

(491)
The operator (491), called usually Weinberg operator, is now gauge invariant and after electroweak sym-
metry breaking it generate neutrino mass matrices

Mν
ij =

v2

M
hij . (492)

Data on neutrino oscillations (see later) and cosmology favor small masses, typically of order 10−2 eV.
In this case, typical values (for Yukawas h’s of order one) of the high mass scale in (491),(492) are of
order M ∼ 1015 GeV, which, interestingly enough are close to the energy scale where gauge couplings
tend to unify. It is often said that neutrino masses are maybe the first hint of a new physics at a very
high scale M . Majorana masses violate the leptonic number by two units ∆L = 2, which is potentially
observable in neutrinoless double beta decay experiments.

An elegant explanation of the appearance of the Weinberg operator is the seesaw mechanism [55],
in which the relevant fermions are the leptonic doublets li = and three sterile Majorana neutrinos Ni =
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N c
i . The relevant lagrangian for neutrino masses is

Lmass = −
√

2 (λijN̄jliΦ + h.c.) − 1

2
MijN

T
i CNj . (493)

After electroweak symmetry breaking, we obtain the mass terms

Lmass = −1

2

(
νTi ψTi

) ( 0 λijv
λijv Mij

) (
νj
ψj

)
+ h.c. . (494)

In what follows we define the Dirac mass matrix mD
ij = λijv. Let us consider for simplicity the one-

generation case, in which case the mass matrix has the two eigenvalues

λ1,2 =
1

2

[
M ±

√
M2 + 4m2

]
. (495)

For m << M , the lightest (heaviest) eigenvalue is λl ' −m2/M (λh ' M ). For the 3 × 3 case, we
obtain a symmetric mass matrix for the three light active neutrinos

Mν = λ
v2

M
λ . (496)

The result can be interpreted as the generation of an effective operator after integrating-out the heavy
right-handed neutrinos, leading precisely to the Weinberg operator

LMajorana mass = − (λ
1

M
λ)ij (liΦ)TC(ljΦ) . (497)

The resulting neutrino mass matrix (496) can be diagonalized by a unitary transformationU called MNSP
matrix

UTmνU = mν
diag , (498)

which can be parametrized as U = V K, where

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , K = diag
(
1 eiφ1 ei(φ2+δ)

)
,

(499)
where c12 ≡ cos θ12, etc.

11.2 Neutrino oscillations
One of the long standing puzzles in particles physics was the deficit of neutrino fluxes in reactors. The sun
generates a large electron neutrino flux, produced from its various thermonuclear reactions. Its estimate
was a factor of three larger than the measured electron neutrino flux in (Super)Kamiokande, in Japan.
This puzzle defined the so-called solar neutrino flux deficit. On the other hand, muon neutrinos are
produced in the earth atmosphere. Their measures flux was also less than the predicted value, leading to
the so-called atmospheric neutrino flux deficit. In both cases, the correct explanation was the oscillation
of neutrinos between different flavors. For the solar neutrino problem, the conversion is νe → νν ,
whereas for the atmospheric neutrinos, the relevant conversion is νµ → ντ . We present in what follows
the field-theory description of this phenomenon. The relevant neutrino lagrangian is

L = ν̄ii/∂νi − (νTi M
ν
ijCνj + h.c.) . (500)

Diagonalization of the neutrino mass matrix proceeds through a unitary transformation

νi = Uijν
′
j , (501)
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where ν ′j are mass eigenstates, whose wavefunction evolves according to the Schrodinger equation
|ν ′i(t)〉 = e−iEi |ν ′i〉. The probability of oscillation from flavor f to flavor f ′ after a propagating time
t can then be computed to be

Pf→f ′(t) = |〈νf ′ |νf (t)〉|2 =
∑
i

|UfiUf ′i|2 + 2
∑
i>j

Re{UfiU∗f ′iU∗fjUf ′jei(Ej−Ei)t} , (502)

whereas the survival probability of the neutrino flavor f equals

Pf→f (t) = |〈νf |νf (t)〉|2 = |
∑
i

|Ufi|2eiEit|2 . (503)

The energy difference can be estimated in the ultra-relativistic approximation to be Ej − Ei ' (m2
j −

m2
i )/2p. Therefore neutrino oscillation data only constrain mass square differences and not the absolute

value of neutrino masses12. The current experimental data on neutrino masses give the numerical values

∆m2
atm ∼ 2.4× 10−3eV 2 (νµ − ντ ) ,

∆m2
sol ∼ 7.9× 10−5eV 2 (νe − νµ) . (504)

Adding also the data on the oscillations experiments we find

∆m12 ' 0.008 eV , ∆m23 ' 0.03− 0.07 eV ,

sin2 θ12 ' 0.31 , 0.29 ≤ sin2 θ23 ≤ 0.71 , sin2 θ13 ' 0.023 . (505)

12 Epilogue : Can Standard Model be the final theory ?
Most people believe that Standard Model is just an effective description, for a lot of various reasons :

- There are no neutrino masses at the renormalizable level in the Standard Model. The neutrino
masses and mixings are often considered as a first hint towards a new mass scale beyond the Standard
Model. The seesaw mechanism points towards heavy Majorana singlet neutrinos, maybe remnants of
Grand Unified Theories.
- The mysterious hierarchies in the quarks/lepton masses and mixings. It is likely that quarks and lep-
tons hierarchies hide the existence of new flavor symmetries or of a geometrical origin related to wave
functions profiles in a higher-dimensional space.
- Standard Model has no viable Dark Matter candidate. This is currently maybe the most pressing prob-
lem: understanding the origin and the properties of the dark matter candidate, which provides about 30%
of the energy density of the Universe.
- The problem with the radiative stability of the electroweak scale ("the hierarchy problem").
- SM has no accurate gauge coupling unification.
The last three problems find together a nice solution in low-energy supersymmetry. The elegant embed-
ding of quarks and leptons into complete representations of SU(5) also point out towards a unified gauge
group structure.
- The strong CP problem. The most popular solution postulates the existence of new light particles, the
axions, which exist in all string theories and often play a central role in their quantum consistency.
- Gravity is not incorporated into a renormalizable framework. The only viable well-studied framework
of quantum gravity to date is string theory.
- The cosmological constant problem Λ ∼ 10−4 eV 4 ∼ 10−120 M4

P . This is certainly the biggest
mistery in modern physics.

On the other hand, any theory describing nature has to be validated by experiments. For the
time being, LHC found no signal of new physics, but it completed the Standard Model pircture by

12Cosmological data sets however an upper bound on the sum of the neutrino masses of the order
∑
imi ≤ 1 eV.
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discovering the Higgs boson with a mass around 125 GeV. It is still early to judge the viability of low-
energy supersymmetry or extra dimensional models. One direction to follow is the couplings of the
SM higgs to fermions, gauge bosons and to itself. If these couplings will show deviations from SM
expectations, it will imply the existence of new forces, particles or resonances at TeV energies. In this
case, LHC or future colliders should be able to see them after a couple of years of running. On the
other hand, there are various mild indications of deviations from flavor universality in meson decays. If
confirmed, due to the high sensitivity of flavor observables to new physics, they could be interpreted as
the existence of new flavor violating processes induced by new physics in the multi TeV range energies.

In any case, nature will likely reserve us surprises which will challenge our view of fundamen-
tal interactions and symmetries at high energies. It will be your challenge and duty to encover them
and continue our fascinating journey towards the understanding the microscopic laws of our mysterious
universe.
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Appendices

A Path integral quantization
A.1 Path integral quantization in quantum mechanics
Let us consider a quantum mechanical system of coordinates and momenta q,p, of hamiltonian

H =
p2

2m
+ V (q) . (A.1)

The transition amplitude in quantum mechanics can be written as a sum over all possible paths, with a
weight provided by the classical action

〈q2, T2|q1, T1〉 ≡ 〈q2|e−
iH(T2−T1)

~ |q1〉 =

∫
Dq(t) e

i
h
S[q(t)] , (A.2)

where the integral is over all paths q(t) with the boundary conditions q(t1) = q1,q(t2) = q2, and where
the classical action is

S[q(t)] =

∫ T2

T1

dt L[q(t)] =

∫ T2

T1

dt
[m

2
q̇2 − V (q)

]
. (A.3)

The classical action that satisfies δS[q(t)]
δq(t) = 0 contributes most to the transition amplitude, but all other

classically forbidden paths contribute in a precised way. The natural question is of course what is the
measure one is integrating upon. A mathematically heuristic, but intuitively clear definition is of dis-
cretizing the time propagation into small time intervals

t0 = T1 , t1 , t2 , · · · tN = T2 , with ti − ti−1 = ε and Nε = T ,

and q(ti) ≡ qi , q(T1) = q1 , q(T2) = q2 . (A.4)

The path integral is then an (appropriately normalized) ordinary integrals over the intermediate coordi-
nates qk, ∫

Dq(t) ∼
∏
k

∫
dqk . (A.5)
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The next step is to split the evolution propagator into the small intermediate time propagations

e−
iH(T2−T1)

~ =
∏
i

e−
iHε
~ '

∏
i

(1− iHε

~
) (A.6)

and introduce an intermediate set of states in each of the propagation time intervals ε

1 =
∏
i

∫
dqik |qk〉〈qk| . (A.7)

By the superposition principle, the transition amplitude can therefore be written as

〈q2, T2|q1, T1〉 = lim
N→∞

∫ N−1∏
qi=1

dqp

N−1∏
ki=0

〈qk+1|e−
iHε
~ |qk〉 . (A.8)

The transition amplitude involves then matrix elements of the type 〈qk+1|e−
iHε
~ |qk〉. For an appropriate

order (called Weyl ordering) of the operators in the hamiltonian, the result is (we set ~ = 1 from now on)

〈qk+1|e−iHε|qk〉 =
∏
i

∫
dpik
2π

e−iεH(
qk+1+qk

2
,pik)+i

∑
i p
i
k(qik+1−q

i
k) (A.9)

and the whole transition amplitude becomes

〈q2, T2|q1, T1〉 =
∏
i,k

∫
dqik

∫
dpik
2π

e
i
∑
k

(∑
i p
i
k(qik+1−q

i
k)−εH(

qk+1+qk
2

,pik)
)
. (A.10)

Notice that this is the discretized version of the path integral expression

〈q2, T2|q1, T1〉 =

∫
Dq(t)

∫
Dp(t) e

i
∫ T2
T1

dt (pq̇−H(q,p))
. (A.11)

Coming back to the discretized form, the integral over momenta is gaussian and can be carried out
explicitly, leading to the final explicit expression

〈q2, T2|q1, T1〉 =
1

N (ε)

∏
k

∫
dqk
N (ε)

e
i
∑
k

(
m(qk+1−qk)

2

2ε
−εV (

qk+1+qk
2

)
, (A.12)

where N (ε) =
√

2πε
−im . Further simplification takes place by considering periodic boundary conditions

q(T1) = q(T2) = q0 and integrating over q0

Z =

∫
dq0 〈q0|e−iH(T2−T1)|q0〉 =

∫
dq0

∫
Dq(t) e

i
h
S[q(t)] . (A.13)

Indeed, by inserting a complete set of states |n〉, it can easily be shown that

Z =
∑
n

e−iEn∆T . (A.14)

Formulae (A.13,A.14) allow often for the determination of the quantum mechanicsl energy levels En, by
computing the "partition function " Z under suitable approximations. The analogy of Z with the partition
function in statistical physics is clearly seen by Wick rotation to euclidian time ∆T = iβ. In this case,
one gets the path integral formulae for the partition function of a quantum system

Z(β) =
∑
n

e−βEn =

∫
dq0

∫
Dq(t) e−βS[q(t)] , (A.15)
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supplemented with the boundary condition q(iβ) = q(0) = q0.

In practice we are interesting in quantum transition amplitudes from initial to final hamiltonian
eigenstates in a collision or transition, cross sections or particle lifetimes, instead of the amplitude dis-
cussed above. The transition from an initial state |ψi〉 at a remote time (where is no interaction) t = −T/2
to a final one |ψi〉 at a future time t = +T/2 is given by

Afi = 〈ψf (T/2)|ψi(−T/2)〉 = 〈ψf |e−iHT |ψi〉 =

∫
dqdq′ 〈ψf |q′〉〈q′|e−iHT |q〉〈q|ψi〉 , (A.16)

Using (A.11), one can express the transition amplitude as

Afi =

∫
dqdq′ ψ∗f (q′)

∫
q(−T/2)=q,q(T/2)=q′

Dq(t)

∫
Dp(t) e

i
∫ T/2
−T/2 dt (pq̇−H(q,p))

ψi(q) . (A.17)

This is actually equivalent to perform a unconstrained functional integral over q(t), with the arguments
of the initial (final) wavefunctions evaluated at the initial (final) time

Afi =

∫
Dq(t)

∫
Dp(t) ψ∗f (q′) e

i
∫ T/2
−T/2 dt (pq̇−H(q,p))

ψi(q) . (A.18)

For a hamiltonian quadratic in momenta (with coefficient independent of q) as in the canonical case
(A.1) and up to a irrelevant (for most practical purposes) multiplicative constant, this is equivalent to the
lagrangian expression

Afi =

∫
Dq(t) ψ∗f (q′) e

i
∫ T/2
−T/2 dt L(q,q̇)

ψi(q) . (A.19)

A.2 Path integral quantization in field theory
The starting point in the path-integral formalism in field theory is the vacuum-to-vacuum amplitude in
the presence of an external field

〈0, out|0, in〉J ≡ Z(J) = eiW (J) =

∫
Dφ ei

∫
d4x[L(φ)+J(x)φ(x)] . (A.20)

It can be shown that the time-ordered correlation functions, which appear in Feynman rules in perturba-
tion theory, can be computed according to

〈0|Tφ(x1) · · ·φ(xn)|0〉 =

∫
Dφ φ(x1) · · ·φ(xn) ei

∫
d4x[L(φ)+J(x)φ(x)] . (A.21)

The interest of introducing the vacuum-to-vacuum amplitudes is that they allow to compute Green func-
tions via functional differentiation

〈0|Tφ(x1) · · ·φ(xn)|0〉 =

(
1

i

δ

δJ(x1)

)
· · ·
(

1

i

δ

δJ(xn)

)
Z(J) ,

G(n)(x1 · · ·xn) = 〈0|Tφ(x1) · · ·φ(xn)|0〉c =
δ

δJ(x1)
· · · δ

δJ(xn)
W (J) , (A.22)

where G(n)(x1 · · ·xn) are connected n-point Green functions. Z(J) can be computed in perturbation
theory by separating the free lagrangian from the interation

Z(J) =

∫
Dφ ei

∫
d4x[L0(φ)+Lint(φ)+J(x)φ(x)] = e

i
∫
d4xLint

(
1
i

δ
δJ(x)

)
Z0(J) , (A.23)

where
Z0(J) =

∫
Dφ ei

∫
d4x[L0(φ)+J(x)φ(x)] = e

1
2

∫
d4xd4yJ(x)DF (x−y)J(y) , (A.24)

where DF (x− y) is the Feynman propagator, in the case of scalar fields given by (65). The eqs. (A.22),
(A.23),(A.24) define perturbation theory and Feynman diagrams.

84



A.3 Path integral quantization in non-abelian gauge theories: the Faddeev-Popov lagrangian
The naive vacuum-to-vacuum amplitude for zero external source in nonabelian gauge theories is

Z(0) =

∫
DA ei

∫
d4x (− 1

4
Fa,2mn) , (A.25)

where DA is the measure over all possible gauge fields configurations (Lorentz and internal indices are
suppressed for simplicity). Things are not so simple in this case, however. Even in the abelian case, the
quadratic lagrangian has no inverse due to the gauge invariance. The same is true for the non-abelian
case, with a further subtlety that we will encounter. In order to quantize the theory, one has to choose a
gauge-fixing condition, F(A) = 0. One can insert then in the path-integral (A.25) the following identity

1 =

∫
Dα(x) δ(F(Aα)) det

(
δF(Aα)

δα

)
, (A.26)

where
Aαm = U(α)(Am +

i

g
∂m)U−1(α) → (Aam)α ' Aam +

i

g
Dmα

a , (A.27)

is the gauge transform of the gauge field Am = AamTa, with Ta generators of the corresponding gauge
field Lie group. The last line in (A.27) refers to the infinitesimal transformations, of parameters αa and
Dmα

a = ∂mα
a + gfabcAbmα

c.

By gauge invariance S[A] ≡ −1
4F

a,2
mn = S[Aα]. The path-integral measure is also invariant to the

replacement A→ Aα. Then one can replace Z(0) with

Z(0) =

∫
Dα

∫
DA eiS[A] δ(F(A)) det

(
δF(Aα)

δα

)
. (A.28)

Let us consider covariant gauge fixing conditions of the form Fa(A) = ∂mAam − ωa(x). Since physical
observables should not depend on changes in the gauge fixing conditions, one cold just integrate over ω
with a gaussian weight∫

Dω e−i
∫
d4x

ω2a(x)

2ξ δ(∂mAam − ωa(x)) = N(ξ) e
−i
∫
d4x 1

2ξ
(∂mAam)2

, (A.29)

with N(ξ) an irrelevant constant that will cancel out in physical computations. For Yang-Mills theories,
one can find

δF(Aα)

δα
=

1

g
∂mDm , det(

1

g
∂mDm) =

∫
D(ca, c̃a) e

i
∫
d4x c̃a (−∂mDmca) , (A.30)

where ca, c̃a are scalar fields in the adjoint representation of the gauge group, but are anticommuting !
They therefore violate the spin-statistics theorem and cannot be physical; for this reason they are called
Faddeev-Popov ghosts [16]. The integrand in (A.28) is independent on the gauge group elements α
and therefore the corresponding integral gives an irrelevant (though infinite) constant which will cancel
upon dividing the various correlation functions by the vacuum-to-vacuum amplitudes, i.e. considering
connected diagrams. The final generating functional takes therefore the form

Z(0) =

∫
D(A, c, c̃) ei

∫
d4xL , (A.31)

where
L = −1

4
(F amn)2 − 1

2ξ
(∂mAam)2 + c̃a(−∂mDmca) . (A.32)

Since the ghosts are unphysical, they cannot be propagating asymptotic states. This can be proven with
the help of the BRST symmetry [56], but this it is beyond the scope of these notes. The lagrangian
(A.32) sets the ground for the Lorentz-covariant perturbation theory and Feynman diagrams displayed in
Section 4.4.
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